scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Sodium-ion batteries: present and future

19 Jun 2017-Chemical Society Reviews (The Royal Society of Chemistry)-Vol. 46, Iss: 12, pp 3529-3614
TL;DR: Current research on materials is summarized and discussed and future directions for SIBs are proposed to provide important insights into scientific and practical issues in the development of S IBs.
Abstract: Energy production and storage technologies have attracted a great deal of attention for day-to-day applications. In recent decades, advances in lithium-ion battery (LIB) technology have improved living conditions around the globe. LIBs are used in most mobile electronic devices as well as in zero-emission electronic vehicles. However, there are increasing concerns regarding load leveling of renewable energy sources and the smart grid as well as the sustainability of lithium sources due to their limited availability and consequent expected price increase. Therefore, whether LIBs alone can satisfy the rising demand for small- and/or mid-to-large-format energy storage applications remains unclear. To mitigate these issues, recent research has focused on alternative energy storage systems. Sodium-ion batteries (SIBs) are considered as the best candidate power sources because sodium is widely available and exhibits similar chemistry to that of LIBs; therefore, SIBs are promising next-generation alternatives. Recently, sodiated layer transition metal oxides, phosphates and organic compounds have been introduced as cathode materials for SIBs. Simultaneously, recent developments have been facilitated by the use of select carbonaceous materials, transition metal oxides (or sulfides), and intermetallic and organic compounds as anodes for SIBs. Apart from electrode materials, suitable electrolytes, additives, and binders are equally important for the development of practical SIBs. Despite developments in electrode materials and other components, there remain several challenges, including cell design and electrode balancing, in the application of sodium ion cells. In this article, we summarize and discuss current research on materials and propose future directions for SIBs. This will provide important insights into scientific and practical issues in the development of SIBs.

Content maybe subject to copyright    Report

Citations
More filters
Journal ArticleDOI
TL;DR: In this paper, the development of specific family of isostructural polyanion phases encompassed by the common chemical formula Na4M3(PO4)2(P2O7) is discussed.

30 citations

Journal ArticleDOI
TL;DR: O3-type layered transition metal oxides have shown great promise as high capacity cathode materials for sodium-ion batteries in large-scare energy storage, due to low cost and the abundance of sodi...
Abstract: O3-type layered transition metal oxides have shown great promise as high capacity cathode materials for sodium-ion batteries in large-scare energy storage, due to low cost and the abundance of sodi...

30 citations

Journal ArticleDOI
TL;DR: This study demonstrates a promising alternative separator to the glass fiber membrane, which can lead to the development of a practical and safe NIB.
Abstract: Sodium-ion batteries (NIBs) are an alternative low-cost battery technology for large-scale energy storage application, and the development of high-performance polymer-based electrolytes is crucial for further advancement of low-cost NIBs. Though electrode materials provide significant contribution to the energy density of the battery, the separator plays a vital role in deciding the safety, duration, and performance of batteries. The glass fiber membrane is considered as the most compatible separator for NIBs because of its high ionic conductivity and reasonable performance. However, the leakage and flammability of the liquid electrolytes while using the glass fiber separator can lead to safety issues. Therefore, herein, we present an alternative approach for the first time to replace the glass fiber separator in NIBs using the porous ceramic membrane (PCM). The polymer blend-based PCM is prepared by a simple solution-casting technique and used as the separator in NIBs. The good thermal stability of the PCM up to 400 °C, high ionic conductivity of about 10-3 S cm-1, high electrolyte uptake, and porous nature make it a better choice over the glass fiber membrane. To demonstrate the applicability of PCM in NIBs, the sodium-ion storage property of hard carbon is evaluated using the PCM as the separator at room temperature. The specific capacity of hard carbon using the PCM-based separator is about 270 mA h g-1 at a current density of 30 mA g-1 which is ∼23% higher than the glass fiber separator (208 mA h g-1) at the same current density. The enhancement in specific capacity is due to the compatibility of the PCM with sodium electrodes, low interfacial resistance, high sodium-ion transference number (0.8), and good electrochemical stability (4.9 V) than the glass fiber separator. This study demonstrates a promising alternative separator to the glass fiber membrane, which can lead to the development of a practical and safe NIB.

30 citations

Journal ArticleDOI
TL;DR: What tools of the Industry 4.0 are used by the companies, what are the reasons that push companies to use these tools and what advantages are from their use are analyzed to show that the most important I4.0 tools integrated with lean production will be IoT and Big Data, which will allow companies to improve their flexibility and productivity.

30 citations

Journal ArticleDOI
TL;DR: In this paper, a survey of 2D anode materials identified or discovered by first-principles calculations is presented, placing emphasis on main group elements (e.g., carbon, boron, phosphorus), main group binary compounds, transition metal carbides, nitrides, and sulfides.
Abstract: The development of quantum‐mechanical approach and unbiased structure search technology plays an important role in accelerating the discovery of new materials. Lithium‐ion batteries (LIBs) are widely used in industrial and agricultural production and daily life. To improve the performance of LIBs and develop new types of batteries, it is necessary and urgent to design electrode materials with superior performance. With respect to bulk materials, two‐dimensional (2D) materials as anodes demonstrate unique advantages. Here, we survey recent progress of 2D anode materials identified or discovered by first‐principles calculations, placing emphasis on main group elements (e.g., carbon, boron, phosphorus), main group binary compounds, transition metal carbides, nitrides, and sulfides. The basic requirements and theoretical descriptors of high‐performance anode materials are outlined. On the other hand, the challenges and opportunities in this field are discussed, which might provide an outlook for the future development.

30 citations


Cites background from "Sodium-ion batteries: present and f..."

  • ...Currently, the main strategies are to prepare anode/cathode materials with high specific capacity, and cathode materials with high discharge voltage platform.(49,50) For 2D anode materials, high specific capacity requires them to absorb more cations (e....

    [...]

References
More filters
Journal ArticleDOI
18 Nov 2011-Science
TL;DR: The battery systems reviewed here include sodium-sulfur batteries that are commercially available for grid applications, redox-flow batteries that offer low cost, and lithium-ion batteries whose development for commercial electronics and electric vehicles is being applied to grid storage.
Abstract: The increasing interest in energy storage for the grid can be attributed to multiple factors, including the capital costs of managing peak demands, the investments needed for grid reliability, and the integration of renewable energy sources. Although existing energy storage is dominated by pumped hydroelectric, there is the recognition that battery systems can offer a number of high-value opportunities, provided that lower costs can be obtained. The battery systems reviewed here include sodium-sulfur batteries that are commercially available for grid applications, redox-flow batteries that offer low cost, and lithium-ion batteries whose development for commercial electronics and electric vehicles is being applied to grid storage.

11,144 citations

Journal ArticleDOI
26 May 2006-Science
TL;DR: In this paper, a single epitaxial graphene layer at the silicon carbide interface is shown to reveal the Dirac nature of the charge carriers, and all-graphene electronically coherent devices and device architectures are envisaged.
Abstract: Ultrathin epitaxial graphite was grown on single-crystal silicon carbide by vacuum graphitization. The material can be patterned using standard nanolithography methods. The transport properties, which are closely related to those of carbon nanotubes, are dominated by the single epitaxial graphene layer at the silicon carbide interface and reveal the Dirac nature of the charge carriers. Patterned structures show quantum confinement of electrons and phase coherence lengths beyond 1 micrometer at 4 kelvin, with mobilities exceeding 2.5 square meters per volt-second. All-graphene electronically coherent devices and device architectures are envisaged.

4,848 citations

Journal Article
TL;DR: The transport properties, which are closely related to those of carbon nanotubes, are dominated by the single epitaxial graphene layer at the silicon carbide interface and reveal the Dirac nature of the charge carriers.
Abstract: Ultrathin epitaxial graphite was grown on single-crystal silicon carbide by vacuum graphitization. The material can be patterned using standard nanolithography methods. The transport properties, which are closely related to those of carbon nanotubes, are dominated by the single epitaxial graphene layer at the silicon carbide interface and reveal the Dirac nature of the charge carriers. Patterned structures show quantum confinement of electrons and phase coherence lengths beyond 1 micrometer at 4 kelvin, with mobilities exceeding 2.5 square meters per volt-second. All-graphene electronically coherent devices and device architectures are envisaged.

4,578 citations

Journal ArticleDOI
TL;DR: In this paper, the status of ambient temperature sodium ion batteries is reviewed in light of recent developments in anode, electrolyte and cathode materials, including high performance layered transition metal oxides and polyanionic compounds.
Abstract: The status of ambient temperature sodium ion batteries is reviewed in light of recent developments in anode, electrolyte and cathode materials. These devices, although early in their stage of development, are promising for large-scale grid storage applications due to the abundance and very low cost of sodium-containing precursors used to make the components. The engineering knowledge developed recently for highly successful Li ion batteries can be leveraged to ensure rapid progress in this area, although different electrode materials and electrolytes will be required for dual intercalation systems based on sodium. In particular, new anode materials need to be identified, since the graphite anode, commonly used in lithium systems, does not intercalate sodium to any appreciable extent. A wider array of choices is available for cathodes, including high performance layered transition metal oxides and polyanionic compounds. Recent developments in electrodes are encouraging, but a great deal of research is necessary, particularly in new electrolytes, and the understanding of the SEI films. The engineering modeling calculations of Na-ion battery energy density indicate that 210 Wh kg−1 in gravimetric energy is possible for Na-ion batteries compared to existing Li-ion technology if a cathode capacity of 200 mAh g−1 and a 500 mAh g−1 anode can be discovered with an average cell potential of 3.3 V.

3,776 citations