scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Sodium-ion batteries: present and future

19 Jun 2017-Chemical Society Reviews (The Royal Society of Chemistry)-Vol. 46, Iss: 12, pp 3529-3614
TL;DR: Current research on materials is summarized and discussed and future directions for SIBs are proposed to provide important insights into scientific and practical issues in the development of S IBs.
Abstract: Energy production and storage technologies have attracted a great deal of attention for day-to-day applications. In recent decades, advances in lithium-ion battery (LIB) technology have improved living conditions around the globe. LIBs are used in most mobile electronic devices as well as in zero-emission electronic vehicles. However, there are increasing concerns regarding load leveling of renewable energy sources and the smart grid as well as the sustainability of lithium sources due to their limited availability and consequent expected price increase. Therefore, whether LIBs alone can satisfy the rising demand for small- and/or mid-to-large-format energy storage applications remains unclear. To mitigate these issues, recent research has focused on alternative energy storage systems. Sodium-ion batteries (SIBs) are considered as the best candidate power sources because sodium is widely available and exhibits similar chemistry to that of LIBs; therefore, SIBs are promising next-generation alternatives. Recently, sodiated layer transition metal oxides, phosphates and organic compounds have been introduced as cathode materials for SIBs. Simultaneously, recent developments have been facilitated by the use of select carbonaceous materials, transition metal oxides (or sulfides), and intermetallic and organic compounds as anodes for SIBs. Apart from electrode materials, suitable electrolytes, additives, and binders are equally important for the development of practical SIBs. Despite developments in electrode materials and other components, there remain several challenges, including cell design and electrode balancing, in the application of sodium ion cells. In this article, we summarize and discuss current research on materials and propose future directions for SIBs. This will provide important insights into scientific and practical issues in the development of SIBs.

Content maybe subject to copyright    Report

Citations
More filters
Journal ArticleDOI
TL;DR: In this article, an orthorhombic marcasite FeS2 was successfully synthesized under solvothermal conditions and subsequently modified using electro-conductive carbon, which exhibited a high Na-storage capacity with stable capacity retention in Na cells; specifically, a discharge capacity of 385 mA h g−1 (over 85% of the initial capacity) was retained after 200 cycles.
Abstract: Iron sulfides have attracted significant attention as promising electrode materials for sodium-ion batteries (SIBs) owing to their low electronegativity, high theoretical capacity, and cost-effectiveness. However, the large size of sodium ions generally induces severe volume changes and sluggish sodium kinetics in iron sulfide electrodes, which have prevented their practical application in SIBs. Herein, an orthorhombic marcasite FeS2 was successfully synthesized under solvothermal conditions and subsequently modified using electro-conductive carbon. This report is the first to use marcasite FeS2 as an electrode material in Na cells. The FeS2/carbon composite exhibited a high Na-storage capacity with stable capacity retention in Na cells; specifically, a discharge capacity of 385 mA h g−1 (over 85% of the initial capacity) was retained after 200 cycles at 100 mA g−1. The following related Na-storage mechanism was proposed: FeS2 + 2Na+ + 2e− → FeS + Na2S on sodiation (reduction), and this reaction occurs reversibly on desodiation (oxidation). The FeS2 cathode in the Na cells delivered a high energy density of approximately 620 W h kg−1 even after 200 cycles, which is comparable to that of commercial cathode materials for lithium-ion batteries.

25 citations

Journal ArticleDOI
TL;DR: In this article, the S-doped MoO2/C nanofibers were investigated for SIBs, and the electrode yields a high reversible capacity at 0.1

25 citations

Journal ArticleDOI
TL;DR: A new P2-type Na0.7(Ni0.6Co 0.2Mn0.2)O2 was prepared via co-precipitation and its electrochemical properties as a cathode for sodium ion batteries were compared with those of O3- type Na(Ni 0.6 co-ordinate 0.3Mn1.2), focusing on phase stability and cycling performance.

25 citations

Journal ArticleDOI
TL;DR: A comprehensive overview of both classical electroanalytical methods and advanced electroanalytic hyphenated techniques for studying the NIBAMs is provided in this paper, where a detailed analysis of the electrochemical process of the metal-ion battery anodes is presented.
Abstract: The physicochemical properties of the metal-ion battery anodes display a key role in the full behavior and electrochemical performance of energy storage devices. Novel ion battery anode materials (NIBAMs) are attracting a growing attention due to the capacity limitation of the classic graphite anodes, which provide low specific- and rate-capacity, and safety issues. Nevertheless, the electrochemical performance of NIBAMs such as the capacity, cyclability, rate capability, voltage profiles, and safety are strongly dependent on the structural and morphological evolution, phase transformation, ion diffusion, and electrode/electrolyte interface reconstruction during charge–discharge cycling and storage. In-depth understanding of the electrochemical process of NIBAMs is essential for optimizing their preparation and application conditions, and exploring NIBAMs. Traditional electroanalytical methods, such as charge/discharge, cyclic voltammetry, and electrochemical impedance spectroscopy are utilized to research the capacity, resistance, rate capability and cyclability of NIBAMs. Recently, rapid progress and development in hyphenated techniques by coupling with X-ray, electron, scanning probe, optics, neutron, and magnetic techniques have provided extensive insights into the nature of structural evolution and morphological changes of NIBAMs, and electrode/electrolyte interface. In this review, a comprehensive overview of both classical electroanalytical methods and advanced electroanalytical hyphenated techniques for studying the NIBAMs is provided.

25 citations

Journal ArticleDOI
TL;DR: In this article, the manufacturing of a free-standing N-doped mesoporous carbon (CPPY) paper by straightforward carbonization of polypyrrole-coated nanocellulose paper is described.
Abstract: Herein, the manufacturing of a free-standing N-doped mesoporous carbon (CPPY) paper by straightforward carbonization of polypyrrole-coated nanocellulose paper is described. The deposition of Na and...

25 citations

References
More filters
Journal ArticleDOI
18 Nov 2011-Science
TL;DR: The battery systems reviewed here include sodium-sulfur batteries that are commercially available for grid applications, redox-flow batteries that offer low cost, and lithium-ion batteries whose development for commercial electronics and electric vehicles is being applied to grid storage.
Abstract: The increasing interest in energy storage for the grid can be attributed to multiple factors, including the capital costs of managing peak demands, the investments needed for grid reliability, and the integration of renewable energy sources. Although existing energy storage is dominated by pumped hydroelectric, there is the recognition that battery systems can offer a number of high-value opportunities, provided that lower costs can be obtained. The battery systems reviewed here include sodium-sulfur batteries that are commercially available for grid applications, redox-flow batteries that offer low cost, and lithium-ion batteries whose development for commercial electronics and electric vehicles is being applied to grid storage.

11,144 citations

Journal ArticleDOI
26 May 2006-Science
TL;DR: In this paper, a single epitaxial graphene layer at the silicon carbide interface is shown to reveal the Dirac nature of the charge carriers, and all-graphene electronically coherent devices and device architectures are envisaged.
Abstract: Ultrathin epitaxial graphite was grown on single-crystal silicon carbide by vacuum graphitization. The material can be patterned using standard nanolithography methods. The transport properties, which are closely related to those of carbon nanotubes, are dominated by the single epitaxial graphene layer at the silicon carbide interface and reveal the Dirac nature of the charge carriers. Patterned structures show quantum confinement of electrons and phase coherence lengths beyond 1 micrometer at 4 kelvin, with mobilities exceeding 2.5 square meters per volt-second. All-graphene electronically coherent devices and device architectures are envisaged.

4,848 citations

Journal Article
TL;DR: The transport properties, which are closely related to those of carbon nanotubes, are dominated by the single epitaxial graphene layer at the silicon carbide interface and reveal the Dirac nature of the charge carriers.
Abstract: Ultrathin epitaxial graphite was grown on single-crystal silicon carbide by vacuum graphitization. The material can be patterned using standard nanolithography methods. The transport properties, which are closely related to those of carbon nanotubes, are dominated by the single epitaxial graphene layer at the silicon carbide interface and reveal the Dirac nature of the charge carriers. Patterned structures show quantum confinement of electrons and phase coherence lengths beyond 1 micrometer at 4 kelvin, with mobilities exceeding 2.5 square meters per volt-second. All-graphene electronically coherent devices and device architectures are envisaged.

4,578 citations

Journal ArticleDOI
TL;DR: In this paper, the status of ambient temperature sodium ion batteries is reviewed in light of recent developments in anode, electrolyte and cathode materials, including high performance layered transition metal oxides and polyanionic compounds.
Abstract: The status of ambient temperature sodium ion batteries is reviewed in light of recent developments in anode, electrolyte and cathode materials. These devices, although early in their stage of development, are promising for large-scale grid storage applications due to the abundance and very low cost of sodium-containing precursors used to make the components. The engineering knowledge developed recently for highly successful Li ion batteries can be leveraged to ensure rapid progress in this area, although different electrode materials and electrolytes will be required for dual intercalation systems based on sodium. In particular, new anode materials need to be identified, since the graphite anode, commonly used in lithium systems, does not intercalate sodium to any appreciable extent. A wider array of choices is available for cathodes, including high performance layered transition metal oxides and polyanionic compounds. Recent developments in electrodes are encouraging, but a great deal of research is necessary, particularly in new electrolytes, and the understanding of the SEI films. The engineering modeling calculations of Na-ion battery energy density indicate that 210 Wh kg−1 in gravimetric energy is possible for Na-ion batteries compared to existing Li-ion technology if a cathode capacity of 200 mAh g−1 and a 500 mAh g−1 anode can be discovered with an average cell potential of 3.3 V.

3,776 citations