scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Sodium-ion batteries: present and future

19 Jun 2017-Chemical Society Reviews (The Royal Society of Chemistry)-Vol. 46, Iss: 12, pp 3529-3614
TL;DR: Current research on materials is summarized and discussed and future directions for SIBs are proposed to provide important insights into scientific and practical issues in the development of S IBs.
Abstract: Energy production and storage technologies have attracted a great deal of attention for day-to-day applications. In recent decades, advances in lithium-ion battery (LIB) technology have improved living conditions around the globe. LIBs are used in most mobile electronic devices as well as in zero-emission electronic vehicles. However, there are increasing concerns regarding load leveling of renewable energy sources and the smart grid as well as the sustainability of lithium sources due to their limited availability and consequent expected price increase. Therefore, whether LIBs alone can satisfy the rising demand for small- and/or mid-to-large-format energy storage applications remains unclear. To mitigate these issues, recent research has focused on alternative energy storage systems. Sodium-ion batteries (SIBs) are considered as the best candidate power sources because sodium is widely available and exhibits similar chemistry to that of LIBs; therefore, SIBs are promising next-generation alternatives. Recently, sodiated layer transition metal oxides, phosphates and organic compounds have been introduced as cathode materials for SIBs. Simultaneously, recent developments have been facilitated by the use of select carbonaceous materials, transition metal oxides (or sulfides), and intermetallic and organic compounds as anodes for SIBs. Apart from electrode materials, suitable electrolytes, additives, and binders are equally important for the development of practical SIBs. Despite developments in electrode materials and other components, there remain several challenges, including cell design and electrode balancing, in the application of sodium ion cells. In this article, we summarize and discuss current research on materials and propose future directions for SIBs. This will provide important insights into scientific and practical issues in the development of SIBs.

Content maybe subject to copyright    Report

Citations
More filters
Journal ArticleDOI
08 Jul 2020-Energies
TL;DR: In this paper, the authors used pine, beechwood, miscanthus, and wheat straw precursors to synthesize HCs at 1000 °C, 1200 °C and 1400 °C by a two-step pyrolysis treatment.
Abstract: Biomass is gaining increased attention as a sustainable and low-cost hard carbon (HC) precursor. However, biomass properties are often unexplored and unrelated to HC performance. Herein, we used pine, beechwood, miscanthus, and wheat straw precursors to synthesize HCs at 1000 °C, 1200 °C and 1400 °C by a two-steps pyrolysis treatment. The final physicochemical and electrochemical properties of the HC evidenced dissimilar trends, mainly influenced by the precursor’s inorganic content, and less by the thermal treatment. Pine and beechwood HCs delivered the highest reversible capacity and coulombic efficiency (CE) at 1400 °C of about 300 mAh·g−1 and 80%, respectively. This performance can be attributed to the structure derived from the high carbon purity precursors. Miscanthus and wheat straw HC performance was strongly affected by the silicon, potassium, and calcium content in the biomasses, which promoted simultaneous detrimental phenomena of intrinsic activation, formation of a silicon carbide phase, and growth of graphitic domains with temperature. The latter HCs delivered 240–200 mAh·g−1 of reversible capacity and 70–60% of CE, respectively, at 1400 °C. The biomass precursor composition, especially its inorganic fraction, seems to be a key parameter to control, for obtaining high performance hard carbon electrodes by direct pyrolysis process.

23 citations


Cites background from "Sodium-ion batteries: present and f..."

  • ...Because of the increasing development and demand of lithium-ion batteries, there is a general concern about the limited abundance of lithium resources and other elements used in the battery, such as cobalt, nickel, and copper [3,4]....

    [...]

Journal ArticleDOI
TL;DR: In this paper, the authors have carried out systematic modelling, using a materials genome approach in the framework of density functional theory (DFT), to formulate a new system of ion conductors and compatible cathodes.
Abstract: It is very important and yet extremely challenging to develop solid-state electrolytes for safe sodium ion batteries, largely due to sodium ions being significantly larger than lithium ones. Here in this work we have carried out systematic modelling, using a materials genome approach in the framework of density functional theory (DFT), to formulate a new system of ion conductors and compatible cathodes. Through iso-valent substitution of both the anion and cation sites in a Na4OI2 compound with a Ruddlesden–Popper type phase based on sheets of anti-perovskite structural units, or an anti-Ruddlesden–Popper phase (ARP), we have identified a series of stable layer-structured phases, with the general formula Na4−cLicAX4 (A = O and/or S; X = I and/or Cl), as remarkable electrolytes and high capacity cathodes to enable solid sodium ion batteries. The optimized Na3LiS0.5O0.5I2 compound is a marvellous Na+ conductor, with an extremely low activation energy for Na+ transportation (0.12 eV) and a high Na+ conductivity of 6.3 mS cm−1 at standard room temperature (298 K). This superb solid electrolyte does not react with the sodium anode, and formation of layer-structured phases due to its sodium depletion leads to compatible cathode materials with high voltage plateaus to enable full batteries with high energy densities.

23 citations

Journal ArticleDOI
TL;DR: In this paper , a multilevel carbon supported NiS anode material with a complex hierarchical hollow structure was synthesized by using a simple hydrothermal-heat treatment method.

23 citations

Journal ArticleDOI
TL;DR: The chemistry underlying the storage phenomena in batteries and supercapacitors has been known to mankind for quite some time now as mentioned in this paper , and a comprehensive insight into the two technologies by drawing a detailed comparison between their governing attributes and potential challenges.
Abstract: The chemistry underlying the storage phenomena in batteries and supercapacitors has been known to mankind for quite some time now. Nonetheless, a holistic apprehension of their rudimentary characteristics throughout their lifetime and beyond is imperative to accentuate their maximum potential. Although numerous reviews have addressed many of the facts individually, a consolidated report on the associated history, challenges, and environmental aspects considering the cutting‐edge advancements in this field is missing. This review gives a comprehensive insight into the two technologies by drawing a detailed comparison between their governing attributes and potential challenges. First, a brief history of batteries and supercapacitors along with their classifications based on materials and corresponding working mechanisms are delineated. Thereafter, some of the inexorable losses restricting the performance of these systems from reaching their theoretical limits are outlined. A picture of the significance of theoretical modeling of batteries and supercapacitors highlighting the associated challenges in the same is drawn. Furthermore, their fates after retirement as well as their scopes in the future based on their current trends are reported in the ensuing sections. Alongside detailed tutorial background of energy storage literature, this review compares different energy storage devices and the latest developments in this field.

23 citations

Journal ArticleDOI
16 Aug 2018
TL;DR: In this article, a flexible and freestanding anode material, consisting of oxygen-deficient TiO2-x nanocages anchored in N-doped carbon fibers (TiO2−x/NCFs), is fabricated for the first time by an electrospin.
Abstract: A novel flexible and freestanding anode material, consisting of oxygen-deficient TiO2–x nanocages anchored in N-doped carbon fibers (TiO2–x/NCFs), is fabricated for the first time by an electrospin...

23 citations

References
More filters
Journal ArticleDOI
18 Nov 2011-Science
TL;DR: The battery systems reviewed here include sodium-sulfur batteries that are commercially available for grid applications, redox-flow batteries that offer low cost, and lithium-ion batteries whose development for commercial electronics and electric vehicles is being applied to grid storage.
Abstract: The increasing interest in energy storage for the grid can be attributed to multiple factors, including the capital costs of managing peak demands, the investments needed for grid reliability, and the integration of renewable energy sources. Although existing energy storage is dominated by pumped hydroelectric, there is the recognition that battery systems can offer a number of high-value opportunities, provided that lower costs can be obtained. The battery systems reviewed here include sodium-sulfur batteries that are commercially available for grid applications, redox-flow batteries that offer low cost, and lithium-ion batteries whose development for commercial electronics and electric vehicles is being applied to grid storage.

11,144 citations

Journal ArticleDOI
26 May 2006-Science
TL;DR: In this paper, a single epitaxial graphene layer at the silicon carbide interface is shown to reveal the Dirac nature of the charge carriers, and all-graphene electronically coherent devices and device architectures are envisaged.
Abstract: Ultrathin epitaxial graphite was grown on single-crystal silicon carbide by vacuum graphitization. The material can be patterned using standard nanolithography methods. The transport properties, which are closely related to those of carbon nanotubes, are dominated by the single epitaxial graphene layer at the silicon carbide interface and reveal the Dirac nature of the charge carriers. Patterned structures show quantum confinement of electrons and phase coherence lengths beyond 1 micrometer at 4 kelvin, with mobilities exceeding 2.5 square meters per volt-second. All-graphene electronically coherent devices and device architectures are envisaged.

4,848 citations

Journal Article
TL;DR: The transport properties, which are closely related to those of carbon nanotubes, are dominated by the single epitaxial graphene layer at the silicon carbide interface and reveal the Dirac nature of the charge carriers.
Abstract: Ultrathin epitaxial graphite was grown on single-crystal silicon carbide by vacuum graphitization. The material can be patterned using standard nanolithography methods. The transport properties, which are closely related to those of carbon nanotubes, are dominated by the single epitaxial graphene layer at the silicon carbide interface and reveal the Dirac nature of the charge carriers. Patterned structures show quantum confinement of electrons and phase coherence lengths beyond 1 micrometer at 4 kelvin, with mobilities exceeding 2.5 square meters per volt-second. All-graphene electronically coherent devices and device architectures are envisaged.

4,578 citations

Journal ArticleDOI
TL;DR: In this paper, the status of ambient temperature sodium ion batteries is reviewed in light of recent developments in anode, electrolyte and cathode materials, including high performance layered transition metal oxides and polyanionic compounds.
Abstract: The status of ambient temperature sodium ion batteries is reviewed in light of recent developments in anode, electrolyte and cathode materials. These devices, although early in their stage of development, are promising for large-scale grid storage applications due to the abundance and very low cost of sodium-containing precursors used to make the components. The engineering knowledge developed recently for highly successful Li ion batteries can be leveraged to ensure rapid progress in this area, although different electrode materials and electrolytes will be required for dual intercalation systems based on sodium. In particular, new anode materials need to be identified, since the graphite anode, commonly used in lithium systems, does not intercalate sodium to any appreciable extent. A wider array of choices is available for cathodes, including high performance layered transition metal oxides and polyanionic compounds. Recent developments in electrodes are encouraging, but a great deal of research is necessary, particularly in new electrolytes, and the understanding of the SEI films. The engineering modeling calculations of Na-ion battery energy density indicate that 210 Wh kg−1 in gravimetric energy is possible for Na-ion batteries compared to existing Li-ion technology if a cathode capacity of 200 mAh g−1 and a 500 mAh g−1 anode can be discovered with an average cell potential of 3.3 V.

3,776 citations