scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Sodium-ion batteries: present and future

19 Jun 2017-Chemical Society Reviews (The Royal Society of Chemistry)-Vol. 46, Iss: 12, pp 3529-3614
TL;DR: Current research on materials is summarized and discussed and future directions for SIBs are proposed to provide important insights into scientific and practical issues in the development of S IBs.
Abstract: Energy production and storage technologies have attracted a great deal of attention for day-to-day applications. In recent decades, advances in lithium-ion battery (LIB) technology have improved living conditions around the globe. LIBs are used in most mobile electronic devices as well as in zero-emission electronic vehicles. However, there are increasing concerns regarding load leveling of renewable energy sources and the smart grid as well as the sustainability of lithium sources due to their limited availability and consequent expected price increase. Therefore, whether LIBs alone can satisfy the rising demand for small- and/or mid-to-large-format energy storage applications remains unclear. To mitigate these issues, recent research has focused on alternative energy storage systems. Sodium-ion batteries (SIBs) are considered as the best candidate power sources because sodium is widely available and exhibits similar chemistry to that of LIBs; therefore, SIBs are promising next-generation alternatives. Recently, sodiated layer transition metal oxides, phosphates and organic compounds have been introduced as cathode materials for SIBs. Simultaneously, recent developments have been facilitated by the use of select carbonaceous materials, transition metal oxides (or sulfides), and intermetallic and organic compounds as anodes for SIBs. Apart from electrode materials, suitable electrolytes, additives, and binders are equally important for the development of practical SIBs. Despite developments in electrode materials and other components, there remain several challenges, including cell design and electrode balancing, in the application of sodium ion cells. In this article, we summarize and discuss current research on materials and propose future directions for SIBs. This will provide important insights into scientific and practical issues in the development of SIBs.

Content maybe subject to copyright    Report

Citations
More filters
Journal ArticleDOI
TL;DR: In this paper, the effect of dispersion of titanium dioxide (TiO2) nanofiller on the sodium ion conducting nanocomposite polymer electrolyte membranes consisting of TiO2 dispersed membranes of poly(vinylidenedifluoride-co-hexafluoropropylene) (PVdF-HFP) soaked in a liquid electrolyte of sodium hexafluorsophosphate (NaPF6) in ethylene carbonate (EC) and propylene carbonates (PC).
Abstract: The paper reports effect of dispersion of titanium dioxide (TiO2) nanofiller on the sodium ion conducting nanocomposite polymer electrolyte membranes consisting of TiO2 dispersed membranes of poly(vinylidenedifluoride-co-hexafluoropropylene) (PVdF-HFP) soaked in a liquid electrolyte of sodium hexafluorophosphate (NaPF6) in ethylene carbonate (EC) and propylene carbonate (PC). The TiO2 dispersed membranes have been prepared by phase inversion technique. The structural and morphological properties of the polymer electrolyte membranes have been investigated using x-ray diffraction, Fourier transform infrared spectroscopy, and scanning electron microscopy. The membranes have been found to be highly porous with maximum porosity ~ 72% and liquid electrolyte uptake ~ 270%. Ionic conductivity of the electrolyte membranes containing different concentrations of TiO2 has been measured by complex impedance spectroscopy. The maximum room temperature ionic conductivity has been found to be ~ 1.3 × 10−3 S cm−1. The ionic conductivity measured with temperature has been found to follow VTF behavior. The ion transport numbers of the membranes have been studied using dc polarization, complex impedance, and cyclic voltammetry. The membranes have been found to be predominantly ionically conducting with Na+ transport number ~ 0.31. The electrochemical stability window of the membranes has also been measured using cyclic voltammetry and found to be 3.5 V.

20 citations

Journal ArticleDOI
TL;DR: In this article, a facile solvothermal synthesis of hollow TiO2 nanospheres using phenolic resins as templates under magnetic stirring conditions, followed by annealing is reported.
Abstract: We report a facile solvothermal synthesis of hollow TiO2 nanospheres using phenolic resin nanospheres as templates under magnetic stirring conditions, followed by annealing. The as-prepared hollow TiO2 nanospheres show an inner diameter of ∼400 nm, a shell thickness of ∼45 nm, and a high specific surface area of 33.8 m2 g−1. When used as anode materials for lithium-ion batteries and sodium-ion batteries, the hollow TiO2 demonstrates excellent cycling stability and rate capability, delivering high lithium storage capacities of 178/138 mA h g−1 at 0.2/1.0 A g−1 after 200/1000 cycles, and high sodium storage capacities of 213/177/115 mA h g−1 after 200/1000/4000 cycles at 0.2/1.0/5.0 A g−1. The outstanding electrochemical performance is related to the robust structural stability of the hollow nanostructured TiO2, which can be expected as a promising anode material for next generation alkali metal ion batteries.

20 citations

Journal ArticleDOI
TL;DR: In this article, deep Zn2+ ions intercalated δ-MnO2 were achieved by the in situ electrochemical deposition route, which significantly enhanced the diffusion ability of Zn 2+ due to the synergistic effects of zinc pillars and structural H2O.

20 citations

Journal ArticleDOI
TL;DR: The phase behavior, Na+ coordination structures, and transport and electrochemical properties of binary mixtures of NaN(SO2F)2 (NaFSA) and sulfolane (SL) solvent were investigated in this article.
Abstract: The phase behavior, Na+ coordination structures, and transport and electrochemical properties of binary mixtures of NaN(SO2F)2 (NaFSA) and sulfolane (SL) solvent were investigated. The NaFSA and SL...

20 citations

References
More filters
Journal ArticleDOI
18 Nov 2011-Science
TL;DR: The battery systems reviewed here include sodium-sulfur batteries that are commercially available for grid applications, redox-flow batteries that offer low cost, and lithium-ion batteries whose development for commercial electronics and electric vehicles is being applied to grid storage.
Abstract: The increasing interest in energy storage for the grid can be attributed to multiple factors, including the capital costs of managing peak demands, the investments needed for grid reliability, and the integration of renewable energy sources. Although existing energy storage is dominated by pumped hydroelectric, there is the recognition that battery systems can offer a number of high-value opportunities, provided that lower costs can be obtained. The battery systems reviewed here include sodium-sulfur batteries that are commercially available for grid applications, redox-flow batteries that offer low cost, and lithium-ion batteries whose development for commercial electronics and electric vehicles is being applied to grid storage.

11,144 citations

Journal ArticleDOI
26 May 2006-Science
TL;DR: In this paper, a single epitaxial graphene layer at the silicon carbide interface is shown to reveal the Dirac nature of the charge carriers, and all-graphene electronically coherent devices and device architectures are envisaged.
Abstract: Ultrathin epitaxial graphite was grown on single-crystal silicon carbide by vacuum graphitization. The material can be patterned using standard nanolithography methods. The transport properties, which are closely related to those of carbon nanotubes, are dominated by the single epitaxial graphene layer at the silicon carbide interface and reveal the Dirac nature of the charge carriers. Patterned structures show quantum confinement of electrons and phase coherence lengths beyond 1 micrometer at 4 kelvin, with mobilities exceeding 2.5 square meters per volt-second. All-graphene electronically coherent devices and device architectures are envisaged.

4,848 citations

Journal Article
TL;DR: The transport properties, which are closely related to those of carbon nanotubes, are dominated by the single epitaxial graphene layer at the silicon carbide interface and reveal the Dirac nature of the charge carriers.
Abstract: Ultrathin epitaxial graphite was grown on single-crystal silicon carbide by vacuum graphitization. The material can be patterned using standard nanolithography methods. The transport properties, which are closely related to those of carbon nanotubes, are dominated by the single epitaxial graphene layer at the silicon carbide interface and reveal the Dirac nature of the charge carriers. Patterned structures show quantum confinement of electrons and phase coherence lengths beyond 1 micrometer at 4 kelvin, with mobilities exceeding 2.5 square meters per volt-second. All-graphene electronically coherent devices and device architectures are envisaged.

4,578 citations

Journal ArticleDOI
TL;DR: In this paper, the status of ambient temperature sodium ion batteries is reviewed in light of recent developments in anode, electrolyte and cathode materials, including high performance layered transition metal oxides and polyanionic compounds.
Abstract: The status of ambient temperature sodium ion batteries is reviewed in light of recent developments in anode, electrolyte and cathode materials. These devices, although early in their stage of development, are promising for large-scale grid storage applications due to the abundance and very low cost of sodium-containing precursors used to make the components. The engineering knowledge developed recently for highly successful Li ion batteries can be leveraged to ensure rapid progress in this area, although different electrode materials and electrolytes will be required for dual intercalation systems based on sodium. In particular, new anode materials need to be identified, since the graphite anode, commonly used in lithium systems, does not intercalate sodium to any appreciable extent. A wider array of choices is available for cathodes, including high performance layered transition metal oxides and polyanionic compounds. Recent developments in electrodes are encouraging, but a great deal of research is necessary, particularly in new electrolytes, and the understanding of the SEI films. The engineering modeling calculations of Na-ion battery energy density indicate that 210 Wh kg−1 in gravimetric energy is possible for Na-ion batteries compared to existing Li-ion technology if a cathode capacity of 200 mAh g−1 and a 500 mAh g−1 anode can be discovered with an average cell potential of 3.3 V.

3,776 citations