scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Sodium-ion batteries: present and future

19 Jun 2017-Chemical Society Reviews (The Royal Society of Chemistry)-Vol. 46, Iss: 12, pp 3529-3614
TL;DR: Current research on materials is summarized and discussed and future directions for SIBs are proposed to provide important insights into scientific and practical issues in the development of S IBs.
Abstract: Energy production and storage technologies have attracted a great deal of attention for day-to-day applications. In recent decades, advances in lithium-ion battery (LIB) technology have improved living conditions around the globe. LIBs are used in most mobile electronic devices as well as in zero-emission electronic vehicles. However, there are increasing concerns regarding load leveling of renewable energy sources and the smart grid as well as the sustainability of lithium sources due to their limited availability and consequent expected price increase. Therefore, whether LIBs alone can satisfy the rising demand for small- and/or mid-to-large-format energy storage applications remains unclear. To mitigate these issues, recent research has focused on alternative energy storage systems. Sodium-ion batteries (SIBs) are considered as the best candidate power sources because sodium is widely available and exhibits similar chemistry to that of LIBs; therefore, SIBs are promising next-generation alternatives. Recently, sodiated layer transition metal oxides, phosphates and organic compounds have been introduced as cathode materials for SIBs. Simultaneously, recent developments have been facilitated by the use of select carbonaceous materials, transition metal oxides (or sulfides), and intermetallic and organic compounds as anodes for SIBs. Apart from electrode materials, suitable electrolytes, additives, and binders are equally important for the development of practical SIBs. Despite developments in electrode materials and other components, there remain several challenges, including cell design and electrode balancing, in the application of sodium ion cells. In this article, we summarize and discuss current research on materials and propose future directions for SIBs. This will provide important insights into scientific and practical issues in the development of SIBs.

Content maybe subject to copyright    Report

Citations
More filters
Journal ArticleDOI
TL;DR: In this paper, a core-shell structure of Sb2S3 nanoparticle confined within a porous carbon shell was synthesized, followed by binder-free electrode fabrication by electrophoretic deposition.

18 citations

Journal ArticleDOI
TL;DR: In this article, a combination of a sodium ion storage mechanism and an ordered transfer mechanism is proposed in different voltage windows to increase the capacity of a composite of MoSe2@graphene, which exhibits a high specific capacity of 640mA h g−1 and robust rate performance.
Abstract: Two-dimensional structured materials have attracted much attention and are commonly employed as active materials for sodium ion batteries owing to their inherent advantages. The reaction mechanisms behind sodium ion storage and diffusion pathways in a composite of MoSe2@graphene were monitored and explored by the in situ synchrotron technique. Based on nanocages in the MoSe2 structure and efficient sodium ion pre-location on the extensive surfaces of graphene, the combination of a sodium ion storage mechanism and an ordered transfer mechanism is proposed in different voltage windows. First, numerous sodium ions are pre-located on the surface by an adsorption reaction. In the second step, all the pre-located sodium ions are immediately inserted into MoSe2 nanosheets, which corresponds to the intercalation reaction mechanism. In the final step, the intercalated sodium ions will undergo a conversion reaction with MoSe2. Meanwhile, numerous nanocages resulting from sufficient deficiency of MoSe2 and layer dislocation will be beneficial to the capacity enhancement and rate capability. The prior adsorption reaction can efficiently improve the rate capability as well. Benefitting from these merits, the composite exhibits a high specific capacity of 640 mA h g−1 and robust rate performance. The cycling lifetime is also increased as well, with a capacity retention of ∼85% over 1000 cycles at a current density of 1.0 A g−1. Therefore, this composite shows promising potential for application in future sodium ion batteries.

18 citations

Journal ArticleDOI
01 Jun 2021-Ionics
TL;DR: In this article, a solid polymer electrolyte of carboxymethyl cellulose (NaCMC) doped with sodium nitrate (NaNO3) was developed by solution casting method.
Abstract: Na+ ion-conducting solid polymer electrolyte (SPE) of sodium salt of carboxymethyl cellulose (NaCMC) doped with sodium nitrate (NaNO3) was developed by solution casting method. FTIR technique confirmed the formation of hydrogen bonding between $$ {NO}_3^{-} $$ anion and functional groups of NaCMC. XRD study revealed the low degree of crystallinity that reduced upon doping. Impedance spectroscopy was adapted in order to analyze the conductivity and dielectric relaxation phenomena of the polymer-salt complex. FTIR deconvolution technique was employed to understand the factor that influences the ionic conductivity in SPE; concentration of mobile ions and ionic mobility both play a vital role. Ion transference number has been found out to be > 0.97 for all samples indicating that the conducting species are primarily ions. The highest ionic conductivity of 3 × 10−3 Scm−1 with the mechanical strength of 30.12 MPa was achieved for a host containing 30 wt.% NaNO3 at ambient temperature.

18 citations

Journal ArticleDOI
TL;DR: A comprehensive review of electrode materials for SIBs and PIBs is provided in comparison to those for LIBs, which include layered oxides, polyanion compounds and Prussian blue analogues for positive electrode materials, and carbon-based and alloy materials for negative electrode materials as discussed by the authors .
Abstract: Development of energy storage systems is a topic of broad societal and economic relevance, and lithium ion batteries (LIBs) are currently the most advanced electrochemical energy storage systems. However, concerns on the scarcity of lithium sources and consequently the expected price increase have driven the development of alternative energy storage systems beyond LIBs. In the search for sustainable and cost-effective technologies, sodium ion batteries (SIBs) and potassium ion batteries (PIBs) have attracted considerable attention. Here, a comprehensive review of ongoing studies on electrode materials for SIBs and PIBs is provided in comparison to those for LIBs, which include layered oxides, polyanion compounds and Prussian blue analogues for positive electrode materials, and carbon-based and alloy materials for negative electrode materials. The importance of the crystal structure for electrode materials is discussed with an emphasis placed on intrinsic and dynamic structural properties and electrochemistry associated with alkali metal ions. The key challenges for electrode materials as well as the interface/interphase between the electrolyte and electrode materials, and the corresponding strategies are also examined. The discussion and insights presented in this review can serve as a guide regarding where future investigations of SIBs and PIBs will be directed.

18 citations

Journal ArticleDOI
01 Oct 2021
TL;DR: Sodium layered-oxide cathodes show promise as an alternative to lithium layered oxides for grid-scale energy storage applications as discussed by the authors, but their O3-type structure is unstable.
Abstract: Sodium layered-oxide cathodes show promise as an alternative to lithium layered oxides for grid-scale energy storage applications. Among the many sodium layered-oxide chemistries, O3-type structure...

18 citations

References
More filters
Journal ArticleDOI
18 Nov 2011-Science
TL;DR: The battery systems reviewed here include sodium-sulfur batteries that are commercially available for grid applications, redox-flow batteries that offer low cost, and lithium-ion batteries whose development for commercial electronics and electric vehicles is being applied to grid storage.
Abstract: The increasing interest in energy storage for the grid can be attributed to multiple factors, including the capital costs of managing peak demands, the investments needed for grid reliability, and the integration of renewable energy sources. Although existing energy storage is dominated by pumped hydroelectric, there is the recognition that battery systems can offer a number of high-value opportunities, provided that lower costs can be obtained. The battery systems reviewed here include sodium-sulfur batteries that are commercially available for grid applications, redox-flow batteries that offer low cost, and lithium-ion batteries whose development for commercial electronics and electric vehicles is being applied to grid storage.

11,144 citations

Journal ArticleDOI
26 May 2006-Science
TL;DR: In this paper, a single epitaxial graphene layer at the silicon carbide interface is shown to reveal the Dirac nature of the charge carriers, and all-graphene electronically coherent devices and device architectures are envisaged.
Abstract: Ultrathin epitaxial graphite was grown on single-crystal silicon carbide by vacuum graphitization. The material can be patterned using standard nanolithography methods. The transport properties, which are closely related to those of carbon nanotubes, are dominated by the single epitaxial graphene layer at the silicon carbide interface and reveal the Dirac nature of the charge carriers. Patterned structures show quantum confinement of electrons and phase coherence lengths beyond 1 micrometer at 4 kelvin, with mobilities exceeding 2.5 square meters per volt-second. All-graphene electronically coherent devices and device architectures are envisaged.

4,848 citations

Journal Article
TL;DR: The transport properties, which are closely related to those of carbon nanotubes, are dominated by the single epitaxial graphene layer at the silicon carbide interface and reveal the Dirac nature of the charge carriers.
Abstract: Ultrathin epitaxial graphite was grown on single-crystal silicon carbide by vacuum graphitization. The material can be patterned using standard nanolithography methods. The transport properties, which are closely related to those of carbon nanotubes, are dominated by the single epitaxial graphene layer at the silicon carbide interface and reveal the Dirac nature of the charge carriers. Patterned structures show quantum confinement of electrons and phase coherence lengths beyond 1 micrometer at 4 kelvin, with mobilities exceeding 2.5 square meters per volt-second. All-graphene electronically coherent devices and device architectures are envisaged.

4,578 citations

Journal ArticleDOI
TL;DR: In this paper, the status of ambient temperature sodium ion batteries is reviewed in light of recent developments in anode, electrolyte and cathode materials, including high performance layered transition metal oxides and polyanionic compounds.
Abstract: The status of ambient temperature sodium ion batteries is reviewed in light of recent developments in anode, electrolyte and cathode materials. These devices, although early in their stage of development, are promising for large-scale grid storage applications due to the abundance and very low cost of sodium-containing precursors used to make the components. The engineering knowledge developed recently for highly successful Li ion batteries can be leveraged to ensure rapid progress in this area, although different electrode materials and electrolytes will be required for dual intercalation systems based on sodium. In particular, new anode materials need to be identified, since the graphite anode, commonly used in lithium systems, does not intercalate sodium to any appreciable extent. A wider array of choices is available for cathodes, including high performance layered transition metal oxides and polyanionic compounds. Recent developments in electrodes are encouraging, but a great deal of research is necessary, particularly in new electrolytes, and the understanding of the SEI films. The engineering modeling calculations of Na-ion battery energy density indicate that 210 Wh kg−1 in gravimetric energy is possible for Na-ion batteries compared to existing Li-ion technology if a cathode capacity of 200 mAh g−1 and a 500 mAh g−1 anode can be discovered with an average cell potential of 3.3 V.

3,776 citations