scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Sodium-ion batteries: present and future

19 Jun 2017-Chemical Society Reviews (The Royal Society of Chemistry)-Vol. 46, Iss: 12, pp 3529-3614
TL;DR: Current research on materials is summarized and discussed and future directions for SIBs are proposed to provide important insights into scientific and practical issues in the development of S IBs.
Abstract: Energy production and storage technologies have attracted a great deal of attention for day-to-day applications. In recent decades, advances in lithium-ion battery (LIB) technology have improved living conditions around the globe. LIBs are used in most mobile electronic devices as well as in zero-emission electronic vehicles. However, there are increasing concerns regarding load leveling of renewable energy sources and the smart grid as well as the sustainability of lithium sources due to their limited availability and consequent expected price increase. Therefore, whether LIBs alone can satisfy the rising demand for small- and/or mid-to-large-format energy storage applications remains unclear. To mitigate these issues, recent research has focused on alternative energy storage systems. Sodium-ion batteries (SIBs) are considered as the best candidate power sources because sodium is widely available and exhibits similar chemistry to that of LIBs; therefore, SIBs are promising next-generation alternatives. Recently, sodiated layer transition metal oxides, phosphates and organic compounds have been introduced as cathode materials for SIBs. Simultaneously, recent developments have been facilitated by the use of select carbonaceous materials, transition metal oxides (or sulfides), and intermetallic and organic compounds as anodes for SIBs. Apart from electrode materials, suitable electrolytes, additives, and binders are equally important for the development of practical SIBs. Despite developments in electrode materials and other components, there remain several challenges, including cell design and electrode balancing, in the application of sodium ion cells. In this article, we summarize and discuss current research on materials and propose future directions for SIBs. This will provide important insights into scientific and practical issues in the development of SIBs.

Content maybe subject to copyright    Report

Citations
More filters
Journal ArticleDOI
09 Nov 2020
TL;DR: The commercialization of Na-ion batteries is hindered by the shortage of abundant and environmentally benign electrode materials with high electrochemical performance as mentioned in this paper, and most of the high-capacity alloyin...
Abstract: Commercialization of Na-ion batteries is hindered by the shortage of abundant and environmentally benign electrode materials with high electrochemical performance. Most of the high-capacity alloyin...

17 citations

Journal ArticleDOI
TL;DR: The novel Na-rich double perovskite, Na1.5La 1.5TeO6.5, reveals a low activation energy barrier for Na+ diffusion and great promise for use as an electrolyte for all solid-state Na-batteries.

17 citations

Journal ArticleDOI
TL;DR: Results indicate that the feasible synthetic strategy of Nb2O5@NC is an effective approach to develop high-performance Nb 2O5-based anodes for large-scale energy storage.
Abstract: Niobium pentoxide (Nb2O5) has drawn significant interest as a promising anode for sodium ion batteries (SIBs) due to its large interplanar lattice spacing and relatively high diffusion efficiency. However, the intrinsic drawbacks of low electrical conductivity and substantial volume change greatly impede its practical applications in large-scale energy storage systems. In this work, ultrasmall Nb2O5 nanoparticles wrapped with nitrogen-doped carbon (denoted as Nb2O5@NC) were delicately synthesized via a facile sol–gel method and subsequent heat treatment. The unique structure of ultrasmall Nb2O5 nanoparticles in a carbonaceous matrix can not only effectively shorten the transmission distance for both ions/electrons but also relieve the strain and stress caused by volume variation during the sodiation/desodiation process. In addition, the synergistic effect of nitrogen doping and carbon coating can further improve the electronic conductivity and pseudocapacitive behavior of the active materials, thus promoting the rapid electrochemical reaction kinetics of the Nb2O5@NC composite. The obtained 600-Nb2O5@NC-2 anode exhibits superior rate capability and outstanding cycling stability, delivering a reversible capacity of 196 mA h g−1 at 1 A g−1 after 1000 cycles. Even at high current densities of 5 A g−1 and 10 A g−1, the long-life cycling tests show that the reversible capacities still remain at 128.4 mA h g−1 and 95.9 mA h g−1 after 3000 cycles, respectively, which is the best performance of Nb2O5-based anodes at high current densities so far. These results indicate that the feasible synthetic strategy of Nb2O5@NC is an effective approach to develop high-performance Nb2O5-based anodes for large-scale energy storage.

17 citations

Journal ArticleDOI
TL;DR: In this article, the authors provide a complete and comprehensive update of the state of knowledge in the field of life cycle assessment of SIBs, including a specific tool for dimensioning and assessing SIB cells, and a cell-specific model of an advanced hydrometallurgical recycling process.
Abstract: Sodium-ion batteries (SIB) are among the most promising type of post-lithium batteries, being promoted for environmental friendliness and the avoidance of scarce or critical raw materials. However, the knowledge-base in this regard is weak, and comparatively little is known about the environmental performance of different SIB types in comparison with current lithium-ion batteries (LIB) under consideration of the whole battery life cycle (‘cradle-to-grave’). This work provides a complete and comprehensive update of the state of knowledge in the field of life cycle assessment of SIB. It develops and discloses a specific tool for dimensioning and assessing SIB cells, including a cell-specific model of an advanced hydrometallurgical recycling process. It provides the corresponding inventory data for five different types of SIB and compares their environmental impacts with those of competing LIB, taking into account the full life cycle (cradle-to-grave) and an individual cell dimensioning based on electrochemical considerations. Recycling is found to be highly relevant for minimizing environmental impacts of the batteries, though its benefit depends strongly on the individual cell chemistry. Deep recycling might not be favourable for cathodes based on abundant materials and could even increase impacts. Especially the assessed manganese and nickel–manganese based SIB chemistries show promising results, given that they achieve at least similar lifetimes as their LIB counterparts.

17 citations

Journal ArticleDOI
TL;DR: In this article, single crystalline NMO nanorods (NRs) were synthesized, and their electronic conductivity was enhanced by one order of magnitude using reduced graphene oxide (rGO), as quantified by local conductive atomic force microcopy (c-AFM) measurement.

17 citations

References
More filters
Journal ArticleDOI
18 Nov 2011-Science
TL;DR: The battery systems reviewed here include sodium-sulfur batteries that are commercially available for grid applications, redox-flow batteries that offer low cost, and lithium-ion batteries whose development for commercial electronics and electric vehicles is being applied to grid storage.
Abstract: The increasing interest in energy storage for the grid can be attributed to multiple factors, including the capital costs of managing peak demands, the investments needed for grid reliability, and the integration of renewable energy sources. Although existing energy storage is dominated by pumped hydroelectric, there is the recognition that battery systems can offer a number of high-value opportunities, provided that lower costs can be obtained. The battery systems reviewed here include sodium-sulfur batteries that are commercially available for grid applications, redox-flow batteries that offer low cost, and lithium-ion batteries whose development for commercial electronics and electric vehicles is being applied to grid storage.

11,144 citations

Journal ArticleDOI
26 May 2006-Science
TL;DR: In this paper, a single epitaxial graphene layer at the silicon carbide interface is shown to reveal the Dirac nature of the charge carriers, and all-graphene electronically coherent devices and device architectures are envisaged.
Abstract: Ultrathin epitaxial graphite was grown on single-crystal silicon carbide by vacuum graphitization. The material can be patterned using standard nanolithography methods. The transport properties, which are closely related to those of carbon nanotubes, are dominated by the single epitaxial graphene layer at the silicon carbide interface and reveal the Dirac nature of the charge carriers. Patterned structures show quantum confinement of electrons and phase coherence lengths beyond 1 micrometer at 4 kelvin, with mobilities exceeding 2.5 square meters per volt-second. All-graphene electronically coherent devices and device architectures are envisaged.

4,848 citations

Journal Article
TL;DR: The transport properties, which are closely related to those of carbon nanotubes, are dominated by the single epitaxial graphene layer at the silicon carbide interface and reveal the Dirac nature of the charge carriers.
Abstract: Ultrathin epitaxial graphite was grown on single-crystal silicon carbide by vacuum graphitization. The material can be patterned using standard nanolithography methods. The transport properties, which are closely related to those of carbon nanotubes, are dominated by the single epitaxial graphene layer at the silicon carbide interface and reveal the Dirac nature of the charge carriers. Patterned structures show quantum confinement of electrons and phase coherence lengths beyond 1 micrometer at 4 kelvin, with mobilities exceeding 2.5 square meters per volt-second. All-graphene electronically coherent devices and device architectures are envisaged.

4,578 citations

Journal ArticleDOI
TL;DR: In this paper, the status of ambient temperature sodium ion batteries is reviewed in light of recent developments in anode, electrolyte and cathode materials, including high performance layered transition metal oxides and polyanionic compounds.
Abstract: The status of ambient temperature sodium ion batteries is reviewed in light of recent developments in anode, electrolyte and cathode materials. These devices, although early in their stage of development, are promising for large-scale grid storage applications due to the abundance and very low cost of sodium-containing precursors used to make the components. The engineering knowledge developed recently for highly successful Li ion batteries can be leveraged to ensure rapid progress in this area, although different electrode materials and electrolytes will be required for dual intercalation systems based on sodium. In particular, new anode materials need to be identified, since the graphite anode, commonly used in lithium systems, does not intercalate sodium to any appreciable extent. A wider array of choices is available for cathodes, including high performance layered transition metal oxides and polyanionic compounds. Recent developments in electrodes are encouraging, but a great deal of research is necessary, particularly in new electrolytes, and the understanding of the SEI films. The engineering modeling calculations of Na-ion battery energy density indicate that 210 Wh kg−1 in gravimetric energy is possible for Na-ion batteries compared to existing Li-ion technology if a cathode capacity of 200 mAh g−1 and a 500 mAh g−1 anode can be discovered with an average cell potential of 3.3 V.

3,776 citations