scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Sodium-ion batteries: present and future

19 Jun 2017-Chemical Society Reviews (The Royal Society of Chemistry)-Vol. 46, Iss: 12, pp 3529-3614
TL;DR: Current research on materials is summarized and discussed and future directions for SIBs are proposed to provide important insights into scientific and practical issues in the development of S IBs.
Abstract: Energy production and storage technologies have attracted a great deal of attention for day-to-day applications. In recent decades, advances in lithium-ion battery (LIB) technology have improved living conditions around the globe. LIBs are used in most mobile electronic devices as well as in zero-emission electronic vehicles. However, there are increasing concerns regarding load leveling of renewable energy sources and the smart grid as well as the sustainability of lithium sources due to their limited availability and consequent expected price increase. Therefore, whether LIBs alone can satisfy the rising demand for small- and/or mid-to-large-format energy storage applications remains unclear. To mitigate these issues, recent research has focused on alternative energy storage systems. Sodium-ion batteries (SIBs) are considered as the best candidate power sources because sodium is widely available and exhibits similar chemistry to that of LIBs; therefore, SIBs are promising next-generation alternatives. Recently, sodiated layer transition metal oxides, phosphates and organic compounds have been introduced as cathode materials for SIBs. Simultaneously, recent developments have been facilitated by the use of select carbonaceous materials, transition metal oxides (or sulfides), and intermetallic and organic compounds as anodes for SIBs. Apart from electrode materials, suitable electrolytes, additives, and binders are equally important for the development of practical SIBs. Despite developments in electrode materials and other components, there remain several challenges, including cell design and electrode balancing, in the application of sodium ion cells. In this article, we summarize and discuss current research on materials and propose future directions for SIBs. This will provide important insights into scientific and practical issues in the development of SIBs.

Content maybe subject to copyright    Report

Citations
More filters
Journal ArticleDOI
TL;DR: In this article, the performance of NFPC and NFPC/C composites with and without carbon ball milling has been investigated and it has been shown that the as-prepared NFPC is stable below 500°C and then decomposes to Fe3O4 and Na3PO4.

16 citations

Journal ArticleDOI
TL;DR: In this article, an unprecedented high capacity and long-term cyclability were achieved for an α-MnS electrode at moderate and high rates by introducing electro-conductive carbon surfaces.
Abstract: The low electrical conductivity of α-MnS generally impedes its use as an electrode material for sodium-ion batteries. However, in this study, an unprecedentedly high capacity and long-term cyclability were achieved for an α-MnS electrode at moderate and high rates by introducing electro-conductive carbon surfaces. A capacity of 302 mA h g−1 was delivered in the first cycle with 85% capacity retention after 200 cycles at 100 mA g−1. Furthermore, the cycling performance at 10C (6.1 A g−1) demonstrated the feasibility of high-rate sodium storage using this anode, with 78% retention of the initial capacity after 200 cycles. This performance was reproduced in a NaCrO2/α-MnS full cell as well. X-ray diffraction, X-ray photoelectron spectroscopy, and time-of-flight secondary-ion mass spectroscopy were used to unveil the reaction mechanism, and the results provided possible explanations for the good electrode performance and rapid sodium storage capabilities.

16 citations

Journal ArticleDOI
TL;DR: Sodium-ion batteries (NIBs) are considered a complementary or even an alternative energy storage technology to lithium ion batteries (LIBs) as mentioned in this paper . But current technological development of NIBs is hindered by fundamental challenges, such as...
Abstract: Sodium-ion batteries (NIBs) are considered a complementary or even an alternative energy storage technology to lithium-ion batteries (LIBs). Current technological development of NIBs is hindered by fundamental challenges, such as...

16 citations

Journal ArticleDOI
TL;DR: The density functional theory modeling approach is employed to comprehensively investigate the redox properties and theoretical performance parameters for a selected set of fluoranil derivatives as cathode materials and suggests that the trifluoromethyl functional group(s) would be detrimental to the design of high-performance batteries.
Abstract: Despite the potential of organic cathodes in sodium-ion batteries, their redox properties still need to be explored. In this study, a density functional theory modeling approach is employed to comprehensively investigate the redox properties and theoretical performance parameters for a selected set of fluoranil derivatives as cathode materials. The redox properties are further correlated with various characteristics including structural variations, electronic properties, and solvation. Three primary conclusions are drawn. First, the incorporation of bulky trifluoromethyl functional group(s) into fluoranil increases its redox potential but significantly decreases its gravimetric charge capacity. This suggests that the trifluoromethyl functional group(s) would be detrimental to the design of high-performance batteries. Second, fluoranil exhibits significant enhancements in terms of redox properties and theoretical performance compared with its hydrogenated form, benzoquinone, suggesting a desired strategy for designing high-performance batteries. Third, the redox properties of fluoranil derivatives would strongly rely not only on structural variations (e.g., bulkiness) and electronic properties (e.g., functionality) but also on solvation energy. It is further verified that cathodic deactivation could be completed by solvation energy. The new understanding will provide us with guidelines for an efficient design of promising organic cathode materials.

16 citations

Journal ArticleDOI
TL;DR: A polyethyleneimine (PEI)-assisted fabrication approach was developed for the rational synthesis of an interconnected framework with nitrogen-doped carbon-confined MoS2 nanosheets/Ti3 C2 Tx MXene.
Abstract: Although it is a promising sodium storage material due to its excellent electrochemical activity, small bandgap, and large interlayer spacing, layered molybdenum disulfide (MoS2 ) suffers from poor rate capability and degraded cycling life, resulting from its serious aggregation upon preparation, sluggish reaction kinetics, and structure expansion during cycling. To address these issues, a polyethyleneimine (PEI)-assisted fabrication approach was developed for the rational synthesis of an interconnected framework with nitrogen-doped carbon-confined MoS2 nanosheets/Ti3 C2 Tx MXene (MoS2 /Ti3 C2 Tx @NC), where the PEI could guide the uniform growth of MoS2 on Ti3 C2 Tx and the self-generated NC simultaneously enhanced its synergistic coupling with MoS2 /Ti3 C2 Tx , thus contributing to the improvement of charge transfer, diffusion kinetics, and structural integrity of the hybrid electrode. Consequently, the desired MoS2 /Ti3 C2 Tx @NC delivered impressive sodium storage performance, demonstrating high reversible capacities of 397.3 and 206.8 mAh g-1 at 0.1 A g-1 after 100 cycles and 0.5 A g-1 after 500 cycles, respectively. Moreover, electrochemical kinetics analysis and charge storage mechanism manifested that high capacitive contribution, facilitated Na+ transport pathways, and synergistic electronic coupling between MoS2 /Ti3 C2 Tx and NC contributed to the superior sodium storage performance.

16 citations

References
More filters
Journal ArticleDOI
18 Nov 2011-Science
TL;DR: The battery systems reviewed here include sodium-sulfur batteries that are commercially available for grid applications, redox-flow batteries that offer low cost, and lithium-ion batteries whose development for commercial electronics and electric vehicles is being applied to grid storage.
Abstract: The increasing interest in energy storage for the grid can be attributed to multiple factors, including the capital costs of managing peak demands, the investments needed for grid reliability, and the integration of renewable energy sources. Although existing energy storage is dominated by pumped hydroelectric, there is the recognition that battery systems can offer a number of high-value opportunities, provided that lower costs can be obtained. The battery systems reviewed here include sodium-sulfur batteries that are commercially available for grid applications, redox-flow batteries that offer low cost, and lithium-ion batteries whose development for commercial electronics and electric vehicles is being applied to grid storage.

11,144 citations

Journal ArticleDOI
26 May 2006-Science
TL;DR: In this paper, a single epitaxial graphene layer at the silicon carbide interface is shown to reveal the Dirac nature of the charge carriers, and all-graphene electronically coherent devices and device architectures are envisaged.
Abstract: Ultrathin epitaxial graphite was grown on single-crystal silicon carbide by vacuum graphitization. The material can be patterned using standard nanolithography methods. The transport properties, which are closely related to those of carbon nanotubes, are dominated by the single epitaxial graphene layer at the silicon carbide interface and reveal the Dirac nature of the charge carriers. Patterned structures show quantum confinement of electrons and phase coherence lengths beyond 1 micrometer at 4 kelvin, with mobilities exceeding 2.5 square meters per volt-second. All-graphene electronically coherent devices and device architectures are envisaged.

4,848 citations

Journal Article
TL;DR: The transport properties, which are closely related to those of carbon nanotubes, are dominated by the single epitaxial graphene layer at the silicon carbide interface and reveal the Dirac nature of the charge carriers.
Abstract: Ultrathin epitaxial graphite was grown on single-crystal silicon carbide by vacuum graphitization. The material can be patterned using standard nanolithography methods. The transport properties, which are closely related to those of carbon nanotubes, are dominated by the single epitaxial graphene layer at the silicon carbide interface and reveal the Dirac nature of the charge carriers. Patterned structures show quantum confinement of electrons and phase coherence lengths beyond 1 micrometer at 4 kelvin, with mobilities exceeding 2.5 square meters per volt-second. All-graphene electronically coherent devices and device architectures are envisaged.

4,578 citations

Journal ArticleDOI
TL;DR: In this paper, the status of ambient temperature sodium ion batteries is reviewed in light of recent developments in anode, electrolyte and cathode materials, including high performance layered transition metal oxides and polyanionic compounds.
Abstract: The status of ambient temperature sodium ion batteries is reviewed in light of recent developments in anode, electrolyte and cathode materials. These devices, although early in their stage of development, are promising for large-scale grid storage applications due to the abundance and very low cost of sodium-containing precursors used to make the components. The engineering knowledge developed recently for highly successful Li ion batteries can be leveraged to ensure rapid progress in this area, although different electrode materials and electrolytes will be required for dual intercalation systems based on sodium. In particular, new anode materials need to be identified, since the graphite anode, commonly used in lithium systems, does not intercalate sodium to any appreciable extent. A wider array of choices is available for cathodes, including high performance layered transition metal oxides and polyanionic compounds. Recent developments in electrodes are encouraging, but a great deal of research is necessary, particularly in new electrolytes, and the understanding of the SEI films. The engineering modeling calculations of Na-ion battery energy density indicate that 210 Wh kg−1 in gravimetric energy is possible for Na-ion batteries compared to existing Li-ion technology if a cathode capacity of 200 mAh g−1 and a 500 mAh g−1 anode can be discovered with an average cell potential of 3.3 V.

3,776 citations