scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Sodium-ion batteries: present and future

19 Jun 2017-Chemical Society Reviews (The Royal Society of Chemistry)-Vol. 46, Iss: 12, pp 3529-3614
TL;DR: Current research on materials is summarized and discussed and future directions for SIBs are proposed to provide important insights into scientific and practical issues in the development of S IBs.
Abstract: Energy production and storage technologies have attracted a great deal of attention for day-to-day applications. In recent decades, advances in lithium-ion battery (LIB) technology have improved living conditions around the globe. LIBs are used in most mobile electronic devices as well as in zero-emission electronic vehicles. However, there are increasing concerns regarding load leveling of renewable energy sources and the smart grid as well as the sustainability of lithium sources due to their limited availability and consequent expected price increase. Therefore, whether LIBs alone can satisfy the rising demand for small- and/or mid-to-large-format energy storage applications remains unclear. To mitigate these issues, recent research has focused on alternative energy storage systems. Sodium-ion batteries (SIBs) are considered as the best candidate power sources because sodium is widely available and exhibits similar chemistry to that of LIBs; therefore, SIBs are promising next-generation alternatives. Recently, sodiated layer transition metal oxides, phosphates and organic compounds have been introduced as cathode materials for SIBs. Simultaneously, recent developments have been facilitated by the use of select carbonaceous materials, transition metal oxides (or sulfides), and intermetallic and organic compounds as anodes for SIBs. Apart from electrode materials, suitable electrolytes, additives, and binders are equally important for the development of practical SIBs. Despite developments in electrode materials and other components, there remain several challenges, including cell design and electrode balancing, in the application of sodium ion cells. In this article, we summarize and discuss current research on materials and propose future directions for SIBs. This will provide important insights into scientific and practical issues in the development of SIBs.

Content maybe subject to copyright    Report

Citations
More filters
Journal ArticleDOI
TL;DR: In this paper, the authors developed a new strategy to decouple the "bulk ion transport" and "interphasial" requirements for electrolytes by pre-engineering a "foreign SEI" from an ester-based electrolyte.

120 citations

Journal ArticleDOI
01 Aug 2019-Small
TL;DR: Major impactful work is outlined, promising research directions, and various performance-optimizing strategies, as well as the energy storage mechanisms investigated by combining theoretical calculations and various electrochemical characterization techniques are presented.
Abstract: Niobium-based oxides including Nb2 O5 , TiNbx O2+2.5x compounds, M-Nb-O (M = Cr, Ga, Fe, Zr, Mg, etc.) family, etc., as the unique structural merit (e.g., quasi-2D network for Li-ion incorporation, open and stable Wadsley- Roth shear crystal structure), are of great interest for applications in energy storage systems such as Li/Na-ion batteries and hybrid supercapacitors. Most of these Nb-based oxides show high operating voltage (>1.0 V vs Li+ /Li) that can suppress the formation of solid electrolyte interface film and lithium dendrites, ensuring the safety of working batteries. Outstanding rate capability is impressive, which can be derived from their fast intercalation pseudocapacitive kinetics. However, the intrinsic poor electrical conductivity hinders their energy storage applications. Various strategies including structure optimization, surface engineering, and carbon modification are effectively used to overcome the issues. This review provides a comprehensive summary on the latest progress of Nb-based oxides for advanced electrochemical energy storage applications. Major impactful work is outlined, promising research directions, and various performance-optimizing strategies, as well as the energy storage mechanisms investigated by combining theoretical calculations and various electrochemical characterization techniques. In addition, challenges and perspectives for future research and commercial applications are also presented.

117 citations

Journal ArticleDOI
TL;DR: A comprehensive review of the recent advances in the development of positive and negative electrode materials for Na secondary batteries can be found in this paper, where the fundamental properties of ionic liquids (ILs) and the design strategies employed to facilitate their application in batteries are introduced.
Abstract: The development of Na secondary batteries that exhibit both sustainability and high energy density as potential successors to lithium-ion batteries for certain large-scale applications has received considerable research interest in recent years. However, although the importance of the electrolyte in such systems has long been largely overlooked, it is becoming increasingly recognized as a key consideration (along with the electrode material) for the non-incremental improvement of Na secondary batteries. Among the candidate electrolytes in this context, ionic liquids (ILs), which are liquids consisting entirely of ions, offer many unique advantages. In this review, the fundamental properties of ILs and the design strategies employed to facilitate their application in batteries are introduced. Comprehensive summaries of the recent advances in the development of positive and negative electrode materials for Na secondary batteries are then presented. Most of the IL-based systems discussed exhibit remarkably enhanced performances compared to those of batteries based on conventional electrolytes. Furthermore, reversible capacity, rate capability, recyclability, and coulombic efficiency are synergistically enhanced by combining IL electrolytes and elevated temperature conditions. Finally, the practical prospects and future challenges associated with the development of electrode materials fabricated from cheap, abundant elements; the efficient utilisation of Na metal as a negative electrode material; and considerations related to the solid–electrolyte interphase are also discussed.

116 citations

Journal ArticleDOI
TL;DR: In this article, the authors demonstrate that the insertion of heteroatoms, B-C, N-C as well as CoSe, into BCN tubes enables the observed excellent adsorption energy of Na ions in high energy storage devices.
Abstract: Trogtalite CoSe nanobuds encapsulated into boron and nitrogen codoped graphene (BCN) nanotubes (CoSe@BCN-750) are synthesized via a concurrent thermal decomposition and selenization processes. The CoSe@BCN-750 nanotubes deliver an excellent storage capacity of 580 mA h g at current density of 100 mA g at 100th cycle, as the anode of a sodium ion battery. The CoSe@BCN-750 nanotubes exhibit a significant rate capability (100–2000 mA g current density) and high stability (almost 98% storage retention after 4000 cycles at large current density of 8000 mA g). The reasons for these excellent storage properties are illuminated by theoretical calculations of the relevant models, and various possible Na ion storage sites are identified through first-principles calculations. These results demonstrate that the insertion of heteroatoms, B–C, N–C as well as CoSe, into BCN tubes, enables the observed excellent adsorption energy of Na ions in high energy storage devices, which supports the experimental results.

116 citations

References
More filters
Journal ArticleDOI
18 Nov 2011-Science
TL;DR: The battery systems reviewed here include sodium-sulfur batteries that are commercially available for grid applications, redox-flow batteries that offer low cost, and lithium-ion batteries whose development for commercial electronics and electric vehicles is being applied to grid storage.
Abstract: The increasing interest in energy storage for the grid can be attributed to multiple factors, including the capital costs of managing peak demands, the investments needed for grid reliability, and the integration of renewable energy sources. Although existing energy storage is dominated by pumped hydroelectric, there is the recognition that battery systems can offer a number of high-value opportunities, provided that lower costs can be obtained. The battery systems reviewed here include sodium-sulfur batteries that are commercially available for grid applications, redox-flow batteries that offer low cost, and lithium-ion batteries whose development for commercial electronics and electric vehicles is being applied to grid storage.

11,144 citations

Journal ArticleDOI
26 May 2006-Science
TL;DR: In this paper, a single epitaxial graphene layer at the silicon carbide interface is shown to reveal the Dirac nature of the charge carriers, and all-graphene electronically coherent devices and device architectures are envisaged.
Abstract: Ultrathin epitaxial graphite was grown on single-crystal silicon carbide by vacuum graphitization. The material can be patterned using standard nanolithography methods. The transport properties, which are closely related to those of carbon nanotubes, are dominated by the single epitaxial graphene layer at the silicon carbide interface and reveal the Dirac nature of the charge carriers. Patterned structures show quantum confinement of electrons and phase coherence lengths beyond 1 micrometer at 4 kelvin, with mobilities exceeding 2.5 square meters per volt-second. All-graphene electronically coherent devices and device architectures are envisaged.

4,848 citations

Journal Article
TL;DR: The transport properties, which are closely related to those of carbon nanotubes, are dominated by the single epitaxial graphene layer at the silicon carbide interface and reveal the Dirac nature of the charge carriers.
Abstract: Ultrathin epitaxial graphite was grown on single-crystal silicon carbide by vacuum graphitization. The material can be patterned using standard nanolithography methods. The transport properties, which are closely related to those of carbon nanotubes, are dominated by the single epitaxial graphene layer at the silicon carbide interface and reveal the Dirac nature of the charge carriers. Patterned structures show quantum confinement of electrons and phase coherence lengths beyond 1 micrometer at 4 kelvin, with mobilities exceeding 2.5 square meters per volt-second. All-graphene electronically coherent devices and device architectures are envisaged.

4,578 citations

Journal ArticleDOI
TL;DR: In this paper, the status of ambient temperature sodium ion batteries is reviewed in light of recent developments in anode, electrolyte and cathode materials, including high performance layered transition metal oxides and polyanionic compounds.
Abstract: The status of ambient temperature sodium ion batteries is reviewed in light of recent developments in anode, electrolyte and cathode materials. These devices, although early in their stage of development, are promising for large-scale grid storage applications due to the abundance and very low cost of sodium-containing precursors used to make the components. The engineering knowledge developed recently for highly successful Li ion batteries can be leveraged to ensure rapid progress in this area, although different electrode materials and electrolytes will be required for dual intercalation systems based on sodium. In particular, new anode materials need to be identified, since the graphite anode, commonly used in lithium systems, does not intercalate sodium to any appreciable extent. A wider array of choices is available for cathodes, including high performance layered transition metal oxides and polyanionic compounds. Recent developments in electrodes are encouraging, but a great deal of research is necessary, particularly in new electrolytes, and the understanding of the SEI films. The engineering modeling calculations of Na-ion battery energy density indicate that 210 Wh kg−1 in gravimetric energy is possible for Na-ion batteries compared to existing Li-ion technology if a cathode capacity of 200 mAh g−1 and a 500 mAh g−1 anode can be discovered with an average cell potential of 3.3 V.

3,776 citations