scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Sodium-ion batteries: present and future

19 Jun 2017-Chemical Society Reviews (The Royal Society of Chemistry)-Vol. 46, Iss: 12, pp 3529-3614
TL;DR: Current research on materials is summarized and discussed and future directions for SIBs are proposed to provide important insights into scientific and practical issues in the development of S IBs.
Abstract: Energy production and storage technologies have attracted a great deal of attention for day-to-day applications. In recent decades, advances in lithium-ion battery (LIB) technology have improved living conditions around the globe. LIBs are used in most mobile electronic devices as well as in zero-emission electronic vehicles. However, there are increasing concerns regarding load leveling of renewable energy sources and the smart grid as well as the sustainability of lithium sources due to their limited availability and consequent expected price increase. Therefore, whether LIBs alone can satisfy the rising demand for small- and/or mid-to-large-format energy storage applications remains unclear. To mitigate these issues, recent research has focused on alternative energy storage systems. Sodium-ion batteries (SIBs) are considered as the best candidate power sources because sodium is widely available and exhibits similar chemistry to that of LIBs; therefore, SIBs are promising next-generation alternatives. Recently, sodiated layer transition metal oxides, phosphates and organic compounds have been introduced as cathode materials for SIBs. Simultaneously, recent developments have been facilitated by the use of select carbonaceous materials, transition metal oxides (or sulfides), and intermetallic and organic compounds as anodes for SIBs. Apart from electrode materials, suitable electrolytes, additives, and binders are equally important for the development of practical SIBs. Despite developments in electrode materials and other components, there remain several challenges, including cell design and electrode balancing, in the application of sodium ion cells. In this article, we summarize and discuss current research on materials and propose future directions for SIBs. This will provide important insights into scientific and practical issues in the development of SIBs.

Content maybe subject to copyright    Report

Citations
More filters
Journal ArticleDOI
TL;DR: The sum of evidence presented in this work indicates that one-dimensional TiS2 nanobelts arrays can reversibly accommodate an unprecedented amount of Al ion species within their layered structure with no significant volume expansion as well as full retention of the nanobelt morphology.
Abstract: The sparse selection of available cathode materials that allow for reversible intercalation (deintercalation) of Al3+ species represents a major hurdle in the development of efficient Al-ion batteries. Herein, we developed cathodes based on TiS2 nanobelts that are capable of withstanding the high charge density of Al-ion species with minimal host lattice/ion interactions. The fabricated TiS2 nanobelts are highly anisotropic and are directly grown on a carbon current collector yielding a spatially controlled array. The sum of evidence presented in this work indicates that one-dimensional TiS2 nanobelt arrays can reversibly accommodate an unprecedented amount of Al ion species within their layered structure with no significant volume expansion as well as full retention of the nanobelt morphology. Thus, the one-dimensional morphology, nanoscale dimensions, short ion diffusion paths, high electrical conductivity, and absence of additives that hinder ion migration lead to Al-based TiS2 electrochemical devices exhibiting high specific capacity, less capacity fade, and resilience under higher cycling rates at both room temperature and elevated temperatures when compared to TiS2 platelets. We also present the effects of sulfur vacancies on the electrochemical performance of Al-based TiS2-x nanobelt array batteries. Although Al-ion batteries are still in their infancy, we believe our TiS2 nanobelt array cathode insertion hosts may play an important role in addressing the poor kinetics of solid-state Al-ion diffusion to enable efficient alternatives beyond lithium energy storage devices.

9 citations

Journal ArticleDOI
TL;DR: In this paper, a pseudocapacitive interface-engineered 3D-CoO-NrGO anode was proposed for a high energy density (153 Wh·kg-1) hybrid capacitors.
Abstract: Sodium-ion hybrid capacitors (SHCs) have attracted great attention owing to the improved power density and cycling stability in comparison with sodium-ion batteries. Nevertheless, the energy density (<100 Wh·kg-1) is usually limited by low specific capacity anodes (<150 mAh·g-1) and "kinetics mismatch" between the electrodes. Hence, we report a high energy density (153 Wh·kg-1) SHC based on a highly pseudocapacitive interface-engineered 3D-CoO-NrGO anode. This high-performance anode (445 mAh·g-1 @0.025 A·g-1, 135 mAh·g-1 @5.0 A·g-1) consists of CoO (∼6 nm) nanoparticles chemically bonded to the NrGO network through Co-O-C bonds. Exceptional pseudocapacitive charge storage (up to ∼81%) and capacity retention (∼80% after 5000 cycles) are also identified for this SHC. Excellent performance of the 3D-CoO-NrGO anode and SHC is owing to the synergistic effect of the CoO conversion reaction and pseudocapacitive sodium-ion storage induced by numerous Na2O/Co/NrGO nanointerfaces. Co-O-C bonds and the 3D microstructure facilitating efficient strain relaxation and charge-transfer correspondingly are also identified as vital factors accountable for the excellent electrochemical performance. The interface-engineering strategy demonstrated provides opportunities to design high-performance transition metal oxide-based anodes for advanced SHCs.

9 citations

Journal ArticleDOI
TL;DR: Reversible electrochemical anion insertion in a LH for the first time using Co and Co-V layer hydroxides is shown and establishes LHs as a materials platform for anions insertion electrochemistry with the potential for future application to electrochemical desalination.
Abstract: Electrode materials which undergo anion insertion are a void in the materials innovation landscape and a missing link to energy efficient electrochemical desalination. In recent years layered hydroxides (LHs) have been studied for a range of electrochemical applications, but to date have not been considered as electrode materials for anion insertion electrochemistry. Here, we show reversible anion insertion in a LH for the first time using Co and Co-V layer hydroxides. By pairing in situ synchrotron and quartz crystal microbalance measurements with a computational unified electrochemical band-diagram description, we reveal a previously undescribed anion-insertion mechanism occurring in Co and Co-V LHs. This proof of concept study demonstrates reversible electrochemical anion insertion in LHs without significant material optimization. These results coupled with our foundational understanding of anion insertion electrochemistry establishes LHs as a materials platform for anion insertion electrochemistry with the potential for future application to electrochemical desalination.

9 citations

Journal ArticleDOI
TL;DR: In this paper, the development of PAN based carbon fibers embedded in a matrix material followed by pyrolysis to form a fibrous C/C composite has been discussed and the processing of carbon paper has been divided into four steps, with the product of each stage used separately for different energy applications.

9 citations

References
More filters
Journal ArticleDOI
18 Nov 2011-Science
TL;DR: The battery systems reviewed here include sodium-sulfur batteries that are commercially available for grid applications, redox-flow batteries that offer low cost, and lithium-ion batteries whose development for commercial electronics and electric vehicles is being applied to grid storage.
Abstract: The increasing interest in energy storage for the grid can be attributed to multiple factors, including the capital costs of managing peak demands, the investments needed for grid reliability, and the integration of renewable energy sources. Although existing energy storage is dominated by pumped hydroelectric, there is the recognition that battery systems can offer a number of high-value opportunities, provided that lower costs can be obtained. The battery systems reviewed here include sodium-sulfur batteries that are commercially available for grid applications, redox-flow batteries that offer low cost, and lithium-ion batteries whose development for commercial electronics and electric vehicles is being applied to grid storage.

11,144 citations

Journal ArticleDOI
26 May 2006-Science
TL;DR: In this paper, a single epitaxial graphene layer at the silicon carbide interface is shown to reveal the Dirac nature of the charge carriers, and all-graphene electronically coherent devices and device architectures are envisaged.
Abstract: Ultrathin epitaxial graphite was grown on single-crystal silicon carbide by vacuum graphitization. The material can be patterned using standard nanolithography methods. The transport properties, which are closely related to those of carbon nanotubes, are dominated by the single epitaxial graphene layer at the silicon carbide interface and reveal the Dirac nature of the charge carriers. Patterned structures show quantum confinement of electrons and phase coherence lengths beyond 1 micrometer at 4 kelvin, with mobilities exceeding 2.5 square meters per volt-second. All-graphene electronically coherent devices and device architectures are envisaged.

4,848 citations

Journal Article
TL;DR: The transport properties, which are closely related to those of carbon nanotubes, are dominated by the single epitaxial graphene layer at the silicon carbide interface and reveal the Dirac nature of the charge carriers.
Abstract: Ultrathin epitaxial graphite was grown on single-crystal silicon carbide by vacuum graphitization. The material can be patterned using standard nanolithography methods. The transport properties, which are closely related to those of carbon nanotubes, are dominated by the single epitaxial graphene layer at the silicon carbide interface and reveal the Dirac nature of the charge carriers. Patterned structures show quantum confinement of electrons and phase coherence lengths beyond 1 micrometer at 4 kelvin, with mobilities exceeding 2.5 square meters per volt-second. All-graphene electronically coherent devices and device architectures are envisaged.

4,578 citations

Journal ArticleDOI
TL;DR: In this paper, the status of ambient temperature sodium ion batteries is reviewed in light of recent developments in anode, electrolyte and cathode materials, including high performance layered transition metal oxides and polyanionic compounds.
Abstract: The status of ambient temperature sodium ion batteries is reviewed in light of recent developments in anode, electrolyte and cathode materials. These devices, although early in their stage of development, are promising for large-scale grid storage applications due to the abundance and very low cost of sodium-containing precursors used to make the components. The engineering knowledge developed recently for highly successful Li ion batteries can be leveraged to ensure rapid progress in this area, although different electrode materials and electrolytes will be required for dual intercalation systems based on sodium. In particular, new anode materials need to be identified, since the graphite anode, commonly used in lithium systems, does not intercalate sodium to any appreciable extent. A wider array of choices is available for cathodes, including high performance layered transition metal oxides and polyanionic compounds. Recent developments in electrodes are encouraging, but a great deal of research is necessary, particularly in new electrolytes, and the understanding of the SEI films. The engineering modeling calculations of Na-ion battery energy density indicate that 210 Wh kg−1 in gravimetric energy is possible for Na-ion batteries compared to existing Li-ion technology if a cathode capacity of 200 mAh g−1 and a 500 mAh g−1 anode can be discovered with an average cell potential of 3.3 V.

3,776 citations