scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Sodium-ion batteries: present and future

19 Jun 2017-Chemical Society Reviews (The Royal Society of Chemistry)-Vol. 46, Iss: 12, pp 3529-3614
TL;DR: Current research on materials is summarized and discussed and future directions for SIBs are proposed to provide important insights into scientific and practical issues in the development of S IBs.
Abstract: Energy production and storage technologies have attracted a great deal of attention for day-to-day applications. In recent decades, advances in lithium-ion battery (LIB) technology have improved living conditions around the globe. LIBs are used in most mobile electronic devices as well as in zero-emission electronic vehicles. However, there are increasing concerns regarding load leveling of renewable energy sources and the smart grid as well as the sustainability of lithium sources due to their limited availability and consequent expected price increase. Therefore, whether LIBs alone can satisfy the rising demand for small- and/or mid-to-large-format energy storage applications remains unclear. To mitigate these issues, recent research has focused on alternative energy storage systems. Sodium-ion batteries (SIBs) are considered as the best candidate power sources because sodium is widely available and exhibits similar chemistry to that of LIBs; therefore, SIBs are promising next-generation alternatives. Recently, sodiated layer transition metal oxides, phosphates and organic compounds have been introduced as cathode materials for SIBs. Simultaneously, recent developments have been facilitated by the use of select carbonaceous materials, transition metal oxides (or sulfides), and intermetallic and organic compounds as anodes for SIBs. Apart from electrode materials, suitable electrolytes, additives, and binders are equally important for the development of practical SIBs. Despite developments in electrode materials and other components, there remain several challenges, including cell design and electrode balancing, in the application of sodium ion cells. In this article, we summarize and discuss current research on materials and propose future directions for SIBs. This will provide important insights into scientific and practical issues in the development of SIBs.

Content maybe subject to copyright    Report

Citations
More filters
Journal ArticleDOI
TL;DR: In this article, a nickel sulfide/carbon (NiS/C) composite is synthesized via concurrent sulfuration and carbonization under nitrogen flow at 600 °C, in which the carbon framework both prevents the volume expansion of NiS during discharge and also gives rise to higher conductivity.
Abstract: Strategies have been tailored to enhance electro-active material capacities and the cycle lives of sodium-ion batteries. Amongst the available electrode materials, metal–organic framework derived anode materials have begun to stand out because of their versatile compositions, structures, and textures, leading to high specific surface areas and more active electrochemical reaction sites. Herein, Ni-MOF is first prepared from a bio-available organic linker, namely gallic acid, in a benign solvent (water). Then a nickel sulfide/carbon (NiS/C) composite is synthesized via concurrent sulfuration and carbonization under nitrogen flow at 600 °C. Carbon-encapsulated NiS particles are formed, in which the carbon framework both prevents the volume expansion of NiS during discharge and also gives rise to higher conductivity. The resulting NiS/C composite is tested as a potential anode material for sodium-ion batteries and it delivered a capacity of around 208 mA h g−1 at a current density of 1475 mA g−1 after 500 charge/discharge cycles. The Na+-ion diffusion rate is calculated through Warburg impedance analysis, and values of 1.8 × 10−16 and 3.5 × 10−15 S cm−1 are obtained initially and after cell operations are terminated, respectively.

7 citations

Journal ArticleDOI
TL;DR: In this paper, the effect of Ti substitution on the structure and electrochemical properties of O3-type Na[(Mn0.4Fe0.3)0.9Ti0.1]O2 was investigated.

7 citations

Journal ArticleDOI
TL;DR: Based on the unique confinement effect and strong chemical interface coupling, the volume expansion and aggregation of the Ni0.5Co 0.5Se2/Ti3C2Tx anode during the cycling process are effectively prevented as mentioned in this paper .

7 citations

Journal ArticleDOI
07 Nov 2022-ACS Nano
TL;DR: In this paper , a facile iodine-ion-assisted galvanic replacement approach was proposed for the synthesis of Bi nanotubes (NTs) for high-rate, long-term and high-capacity sodium storage.
Abstract: Bismuth (Bi) has emerged as a promising anode material for fast-charging and long-cycling sodium-ion batteries (SIBs). However, its dramatically volumetric variations during cycling will undesirably cause the pulverization of active materials, severely limiting the electrochemical performance of Bi-based electrodes. Constructing hollow nanostructures is recognized as an effective way to resolve the volume expansion issues of alloy-type anodes but remains a great challenge for metallic bismuth. Here, we report a facile iodine-ion-assisted galvanic replacement approach for the synthesis of Bi nanotubes (NTs) for high-rate, long-term and high-capacity sodium storage. The hollow tubular structure effectively alleviates the structural strain during sodiation/desodiation processes, resulting in excellent structural stability; the thin wall and large surface area enable ultrafast sodium ion transport. Benefiting from the structural merits, the Bi NT electrode exhibits extraordinary rate capability (84% capacity retention at 150 A g-1) and outstanding cycling stability (74% capacity retention for 65,000 cycles at 50 A g-1), which represent the best rate performance and longest cycle life among all reported anodes for SIBs. Moreover, when coupled with the Na3(VOPO4)2F cathode in full cells, this electrode also demonstrates excellent cycling performance, showing the great promise of Bi NTs for practical application. A combination of advanced research techniques reveals that the excellent performance originates from the structural robustness of the Bi NTs and the fast electrochemical kinetics during cycling.

7 citations

Journal ArticleDOI
TL;DR: In this article, a facile chemical precipitation synthesis of antimony (Sb) nanocrystals embedded in phosphorus (P) pitaya-like nanocomposites was proposed.
Abstract: Ultrafine (3–5 nm in diameters) antimony (Sb) nanocrystals embedded in phosphorus (P) pitaya-like nanocomposites (Sb/P composites) were fabricated via a facile chemical precipitation synthesis. In ...

7 citations

References
More filters
Journal ArticleDOI
18 Nov 2011-Science
TL;DR: The battery systems reviewed here include sodium-sulfur batteries that are commercially available for grid applications, redox-flow batteries that offer low cost, and lithium-ion batteries whose development for commercial electronics and electric vehicles is being applied to grid storage.
Abstract: The increasing interest in energy storage for the grid can be attributed to multiple factors, including the capital costs of managing peak demands, the investments needed for grid reliability, and the integration of renewable energy sources. Although existing energy storage is dominated by pumped hydroelectric, there is the recognition that battery systems can offer a number of high-value opportunities, provided that lower costs can be obtained. The battery systems reviewed here include sodium-sulfur batteries that are commercially available for grid applications, redox-flow batteries that offer low cost, and lithium-ion batteries whose development for commercial electronics and electric vehicles is being applied to grid storage.

11,144 citations

Journal ArticleDOI
26 May 2006-Science
TL;DR: In this paper, a single epitaxial graphene layer at the silicon carbide interface is shown to reveal the Dirac nature of the charge carriers, and all-graphene electronically coherent devices and device architectures are envisaged.
Abstract: Ultrathin epitaxial graphite was grown on single-crystal silicon carbide by vacuum graphitization. The material can be patterned using standard nanolithography methods. The transport properties, which are closely related to those of carbon nanotubes, are dominated by the single epitaxial graphene layer at the silicon carbide interface and reveal the Dirac nature of the charge carriers. Patterned structures show quantum confinement of electrons and phase coherence lengths beyond 1 micrometer at 4 kelvin, with mobilities exceeding 2.5 square meters per volt-second. All-graphene electronically coherent devices and device architectures are envisaged.

4,848 citations

Journal Article
TL;DR: The transport properties, which are closely related to those of carbon nanotubes, are dominated by the single epitaxial graphene layer at the silicon carbide interface and reveal the Dirac nature of the charge carriers.
Abstract: Ultrathin epitaxial graphite was grown on single-crystal silicon carbide by vacuum graphitization. The material can be patterned using standard nanolithography methods. The transport properties, which are closely related to those of carbon nanotubes, are dominated by the single epitaxial graphene layer at the silicon carbide interface and reveal the Dirac nature of the charge carriers. Patterned structures show quantum confinement of electrons and phase coherence lengths beyond 1 micrometer at 4 kelvin, with mobilities exceeding 2.5 square meters per volt-second. All-graphene electronically coherent devices and device architectures are envisaged.

4,578 citations

Journal ArticleDOI
TL;DR: In this paper, the status of ambient temperature sodium ion batteries is reviewed in light of recent developments in anode, electrolyte and cathode materials, including high performance layered transition metal oxides and polyanionic compounds.
Abstract: The status of ambient temperature sodium ion batteries is reviewed in light of recent developments in anode, electrolyte and cathode materials. These devices, although early in their stage of development, are promising for large-scale grid storage applications due to the abundance and very low cost of sodium-containing precursors used to make the components. The engineering knowledge developed recently for highly successful Li ion batteries can be leveraged to ensure rapid progress in this area, although different electrode materials and electrolytes will be required for dual intercalation systems based on sodium. In particular, new anode materials need to be identified, since the graphite anode, commonly used in lithium systems, does not intercalate sodium to any appreciable extent. A wider array of choices is available for cathodes, including high performance layered transition metal oxides and polyanionic compounds. Recent developments in electrodes are encouraging, but a great deal of research is necessary, particularly in new electrolytes, and the understanding of the SEI films. The engineering modeling calculations of Na-ion battery energy density indicate that 210 Wh kg−1 in gravimetric energy is possible for Na-ion batteries compared to existing Li-ion technology if a cathode capacity of 200 mAh g−1 and a 500 mAh g−1 anode can be discovered with an average cell potential of 3.3 V.

3,776 citations