scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Sodium-ion batteries: present and future

19 Jun 2017-Chemical Society Reviews (The Royal Society of Chemistry)-Vol. 46, Iss: 12, pp 3529-3614
TL;DR: Current research on materials is summarized and discussed and future directions for SIBs are proposed to provide important insights into scientific and practical issues in the development of S IBs.
Abstract: Energy production and storage technologies have attracted a great deal of attention for day-to-day applications. In recent decades, advances in lithium-ion battery (LIB) technology have improved living conditions around the globe. LIBs are used in most mobile electronic devices as well as in zero-emission electronic vehicles. However, there are increasing concerns regarding load leveling of renewable energy sources and the smart grid as well as the sustainability of lithium sources due to their limited availability and consequent expected price increase. Therefore, whether LIBs alone can satisfy the rising demand for small- and/or mid-to-large-format energy storage applications remains unclear. To mitigate these issues, recent research has focused on alternative energy storage systems. Sodium-ion batteries (SIBs) are considered as the best candidate power sources because sodium is widely available and exhibits similar chemistry to that of LIBs; therefore, SIBs are promising next-generation alternatives. Recently, sodiated layer transition metal oxides, phosphates and organic compounds have been introduced as cathode materials for SIBs. Simultaneously, recent developments have been facilitated by the use of select carbonaceous materials, transition metal oxides (or sulfides), and intermetallic and organic compounds as anodes for SIBs. Apart from electrode materials, suitable electrolytes, additives, and binders are equally important for the development of practical SIBs. Despite developments in electrode materials and other components, there remain several challenges, including cell design and electrode balancing, in the application of sodium ion cells. In this article, we summarize and discuss current research on materials and propose future directions for SIBs. This will provide important insights into scientific and practical issues in the development of SIBs.

Content maybe subject to copyright    Report

Citations
More filters
Journal ArticleDOI
TL;DR: In this article , the storage properties of ultra-small Fe3S4 nanoparticles, synthesized applying a solvothermal route, were investigated and shown to exhibit a very good electrochemical performance as anode material for SIBs.
Abstract: Various electrode materials are considered for sodium-ion batteries (SIBs) and one important prerequisite for developments of SIBs is a detailed understanding about charge storage mechanisms. Herein, we present a rigorous study about Na storage properties of ultra-small Fe3S4 nanoparticles, synthesized applying a solvothermal route, which exhibit a very good electrochemical performance as anode material for SIBs. A closer look into electrochemical reaction pathways on the nanoscale, utilizing synchrotron-based X-ray diffraction and X-ray absorption techniques, reveals a complicated conversion mechanism. Initially, separation of Fe3S4 into nanocrystalline intermediates occurs accompanied by reduction of Fe3+ to Fe2+ cations. Discharge to 0.1 V leads to formation of strongly disordered Fe0 finely dispersed in a nanosized Na2S matrix. The resulting volume expansion leads to a worse long-term stability in the voltage range 3.0-0.1 V. Adjusting the lower cut-off potential to 0.5 V, crystallization of Na2S is prevented and a completely amorphous intermediate stage is formed. Thus, the smaller voltage window is favorable for long-term stability, yielding highly reversible capacity retention, e.g., 486 mAh g-1 after 300 cycles applying 0.5 A g-1 and superior coulombic efficiencies >99.9%. During charge to 3.0 V, Fe3S4 with smaller domains are reversibly generated in the 1st cycle, but further cycling results in loss of structural long-range order, whereas the local environment resembles that of Fe3S4 in subsequent charged states. Electrokinetic analyses reveal high capacitive contributions to the charge storage, indicating shortened diffusion lengths and thus, redox reactions occur predominantly at surfaces of nanosized conversion products.

7 citations

Journal ArticleDOI
TL;DR: In this paper, a one-step large-scale fabrication of bismuth@N-doped carbon (Bi@C) is proposed to construct well-behaved electrode materials for sodium-ion batteries.
Abstract: Bismuth has been deemed to be the promising anode material for sodium-ion batteries on account of large volumetric capacity (3800 mAh cm−3) and high electrical conductivity. However, huge volume change during sodiation/desodiation usually causes pulverization of electrode, leading to poor rate performance and cycling stability. Herein, one-step large-scale fabrication of bismuth@N-doped carbon (Bi@C) is proposed to construct well-behaved electrode materials for sodium-ion batteries. Surprisingly, the Bi@C anode presents superior sodium storage performance, manifesting a high specific capacity (346 mAh g−1 at 0.1 A g−1), excellent rate stability (274 mAh g−1 under ultrahigh current density of 50 A g−1) and long life span (344 mAh g−1 at 1 A g−1 after cycling over 1500 times, 0.003% loss per cycle). Such excellent performances of Bi@C are attributed to the nano-sized Bi particles (~ 15 nm) encapsulated by thin carbon layer doped with N. These structural characteristics optimize the ion transfer and increase the accessible area between electrode and electrolyte, and then give a high capacitive contribution to the capacity.

7 citations

Journal ArticleDOI
TL;DR: This work establishes that the amorphous structure enhances the reversibility and cycling stability of conversion reaction-based electrodes by elongating the diffusion pathway of the metal ions.
Abstract: The realization of conversion type electrode materials in Na-ion batteries (NIBs) has been hindered due to the nucleation property of the active material. During the sodiation, the transition metal (TM) cations reduce to the metallic state, and the respective anions react with the sodium ions. As a result, the metal particles are surrounded by the matrix of the insulating sodium compound, resulting in loss of electrical contact among the TM particles. Here, an amorphous molybdenum sulfide (a-MoSx) electrode is made highly reversible by suppressing TM particle growth via elongating the cation diffusion pathway. Because of the long distance among Mo atoms in a-MoSx, the growth of Mo nuclei is limited. This leads to more frequent nucleation and formation of smaller particles (3-5 nm in diameter). Since the smaller particles have a larger surface area than the bigger particles, the electrical contacts among Mo particles are clearly retained. The a-MoSx anode for NIBs demonstrates a high capacity and excellent cycling retention. This work establishes that the amorphous structure enhances the reversibility and cycling stability of conversion-reaction-based electrodes by elongating the diffusion pathway of the metal ions.

7 citations

References
More filters
Journal ArticleDOI
18 Nov 2011-Science
TL;DR: The battery systems reviewed here include sodium-sulfur batteries that are commercially available for grid applications, redox-flow batteries that offer low cost, and lithium-ion batteries whose development for commercial electronics and electric vehicles is being applied to grid storage.
Abstract: The increasing interest in energy storage for the grid can be attributed to multiple factors, including the capital costs of managing peak demands, the investments needed for grid reliability, and the integration of renewable energy sources. Although existing energy storage is dominated by pumped hydroelectric, there is the recognition that battery systems can offer a number of high-value opportunities, provided that lower costs can be obtained. The battery systems reviewed here include sodium-sulfur batteries that are commercially available for grid applications, redox-flow batteries that offer low cost, and lithium-ion batteries whose development for commercial electronics and electric vehicles is being applied to grid storage.

11,144 citations

Journal ArticleDOI
26 May 2006-Science
TL;DR: In this paper, a single epitaxial graphene layer at the silicon carbide interface is shown to reveal the Dirac nature of the charge carriers, and all-graphene electronically coherent devices and device architectures are envisaged.
Abstract: Ultrathin epitaxial graphite was grown on single-crystal silicon carbide by vacuum graphitization. The material can be patterned using standard nanolithography methods. The transport properties, which are closely related to those of carbon nanotubes, are dominated by the single epitaxial graphene layer at the silicon carbide interface and reveal the Dirac nature of the charge carriers. Patterned structures show quantum confinement of electrons and phase coherence lengths beyond 1 micrometer at 4 kelvin, with mobilities exceeding 2.5 square meters per volt-second. All-graphene electronically coherent devices and device architectures are envisaged.

4,848 citations

Journal Article
TL;DR: The transport properties, which are closely related to those of carbon nanotubes, are dominated by the single epitaxial graphene layer at the silicon carbide interface and reveal the Dirac nature of the charge carriers.
Abstract: Ultrathin epitaxial graphite was grown on single-crystal silicon carbide by vacuum graphitization. The material can be patterned using standard nanolithography methods. The transport properties, which are closely related to those of carbon nanotubes, are dominated by the single epitaxial graphene layer at the silicon carbide interface and reveal the Dirac nature of the charge carriers. Patterned structures show quantum confinement of electrons and phase coherence lengths beyond 1 micrometer at 4 kelvin, with mobilities exceeding 2.5 square meters per volt-second. All-graphene electronically coherent devices and device architectures are envisaged.

4,578 citations

Journal ArticleDOI
TL;DR: In this paper, the status of ambient temperature sodium ion batteries is reviewed in light of recent developments in anode, electrolyte and cathode materials, including high performance layered transition metal oxides and polyanionic compounds.
Abstract: The status of ambient temperature sodium ion batteries is reviewed in light of recent developments in anode, electrolyte and cathode materials. These devices, although early in their stage of development, are promising for large-scale grid storage applications due to the abundance and very low cost of sodium-containing precursors used to make the components. The engineering knowledge developed recently for highly successful Li ion batteries can be leveraged to ensure rapid progress in this area, although different electrode materials and electrolytes will be required for dual intercalation systems based on sodium. In particular, new anode materials need to be identified, since the graphite anode, commonly used in lithium systems, does not intercalate sodium to any appreciable extent. A wider array of choices is available for cathodes, including high performance layered transition metal oxides and polyanionic compounds. Recent developments in electrodes are encouraging, but a great deal of research is necessary, particularly in new electrolytes, and the understanding of the SEI films. The engineering modeling calculations of Na-ion battery energy density indicate that 210 Wh kg−1 in gravimetric energy is possible for Na-ion batteries compared to existing Li-ion technology if a cathode capacity of 200 mAh g−1 and a 500 mAh g−1 anode can be discovered with an average cell potential of 3.3 V.

3,776 citations