scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Sodium-ion batteries: present and future

19 Jun 2017-Chemical Society Reviews (The Royal Society of Chemistry)-Vol. 46, Iss: 12, pp 3529-3614
TL;DR: Current research on materials is summarized and discussed and future directions for SIBs are proposed to provide important insights into scientific and practical issues in the development of S IBs.
Abstract: Energy production and storage technologies have attracted a great deal of attention for day-to-day applications. In recent decades, advances in lithium-ion battery (LIB) technology have improved living conditions around the globe. LIBs are used in most mobile electronic devices as well as in zero-emission electronic vehicles. However, there are increasing concerns regarding load leveling of renewable energy sources and the smart grid as well as the sustainability of lithium sources due to their limited availability and consequent expected price increase. Therefore, whether LIBs alone can satisfy the rising demand for small- and/or mid-to-large-format energy storage applications remains unclear. To mitigate these issues, recent research has focused on alternative energy storage systems. Sodium-ion batteries (SIBs) are considered as the best candidate power sources because sodium is widely available and exhibits similar chemistry to that of LIBs; therefore, SIBs are promising next-generation alternatives. Recently, sodiated layer transition metal oxides, phosphates and organic compounds have been introduced as cathode materials for SIBs. Simultaneously, recent developments have been facilitated by the use of select carbonaceous materials, transition metal oxides (or sulfides), and intermetallic and organic compounds as anodes for SIBs. Apart from electrode materials, suitable electrolytes, additives, and binders are equally important for the development of practical SIBs. Despite developments in electrode materials and other components, there remain several challenges, including cell design and electrode balancing, in the application of sodium ion cells. In this article, we summarize and discuss current research on materials and propose future directions for SIBs. This will provide important insights into scientific and practical issues in the development of SIBs.

Content maybe subject to copyright    Report

Citations
More filters
Journal ArticleDOI
TL;DR: In this article, the authors presented a comprehensive characterization of Na0.66Li0.22Ti0.78O2 anode material for Na-ion batteries in terms of the sodium-ion transport mechanism and electrochemical performance.
Abstract: Within this paper, we present a comprehensive characterization of Na0.66Li0.22Ti0.78O2 – inexpensive, zero-strain anode material for Na-ion batteries in terms of the sodium-ion transport mechanism and electrochemical performance. Na0.66Li0.22Ti0.78O2 was synthesized via a citrate assisted sol-gel method for the first time, which resulted in a four times higher specific surface area as compared to the conventional synthesis method. EIS and DC polarization experiments showed that electrical conductivity in Na0.66Li0.22Ti0.78O2 is mainly ionic with bulk conductivity of 1.54·10−4 S cm−1 at room temperature and enthalpy of Na-ion migration equal to 0.37 eV. Structural changes during intercalation/deintercalation were investigated using operando X-ray diffraction and revealed that lattice parameters monotonically evolve, and P2 structure is maintained during the whole range of sodium insertion/extraction. GITT technique revealed that the chemical diffusion coefficient of sodium changes within two orders of magnitude between 4.8·10−12 cm2 s−1 and 2.5·10−10 cm2 s−1, and such changes were correlated with evolution of occupancy of sodium sites, and contraction of the interlayer gap. Electrochemical tests in both half and full cells show excellent performance of Na0.66Li0.22Ti0.78O2 in a wide range of current loads. The supremacy of sol-gel method fabricated materials is especially visible under high currents (10C), where 60% of theoretical capacity is preserved, which is two times higher than in the materials obtained via a standard high-temperature solid-state reaction. Full cells with a Na0.72Li0.24Mn0.76O2 cathode provided 2.88 V mid-point voltage and a discharge capacity of 132 mAh g−1. Such results prove that Na0.66Li0.22Ti0.78O2 anodes may find their applications in both large-scale energy storage systems and high-power output devices.

7 citations

Journal ArticleDOI
TL;DR: In this paper, ZnIn2S4 (B-ZIS) and ZnS4/C composites anode are synthesized using hydrothermal method and followed by ball-milling process.

7 citations

Journal ArticleDOI
27 Dec 2017-Scanning
TL;DR: The synthesis of open-framework Cu-Ge-based chalcogenides [Cu8Ge6Se19](C5H12N)6 (CGSe) and the research of their energy storage application as SIB anodes for the first time are reported on.
Abstract: Open-framework chalcogenides are potential electrode materials for sodium-ion batteries (SIBs) due to their architectures with fast-ion conductivity. Herein, we report on the successful synthesis of open-framework Cu-Ge-based chalcogenides [Cu8Ge6Se19](C5H12N)6 (CGSe) and the research of their energy storage application as SIB anodes for the first time. As a result, the CGSe anode exhibited good electrochemical performances such as high reversible capacity (463.3 mAh g−1), excellent rate performance, and considerable cycling stability. Our exploration not only develops a promising electrode material for SIBs, but also extends the application of open-framework chalcogenides.

7 citations

References
More filters
Journal ArticleDOI
18 Nov 2011-Science
TL;DR: The battery systems reviewed here include sodium-sulfur batteries that are commercially available for grid applications, redox-flow batteries that offer low cost, and lithium-ion batteries whose development for commercial electronics and electric vehicles is being applied to grid storage.
Abstract: The increasing interest in energy storage for the grid can be attributed to multiple factors, including the capital costs of managing peak demands, the investments needed for grid reliability, and the integration of renewable energy sources. Although existing energy storage is dominated by pumped hydroelectric, there is the recognition that battery systems can offer a number of high-value opportunities, provided that lower costs can be obtained. The battery systems reviewed here include sodium-sulfur batteries that are commercially available for grid applications, redox-flow batteries that offer low cost, and lithium-ion batteries whose development for commercial electronics and electric vehicles is being applied to grid storage.

11,144 citations

Journal ArticleDOI
26 May 2006-Science
TL;DR: In this paper, a single epitaxial graphene layer at the silicon carbide interface is shown to reveal the Dirac nature of the charge carriers, and all-graphene electronically coherent devices and device architectures are envisaged.
Abstract: Ultrathin epitaxial graphite was grown on single-crystal silicon carbide by vacuum graphitization. The material can be patterned using standard nanolithography methods. The transport properties, which are closely related to those of carbon nanotubes, are dominated by the single epitaxial graphene layer at the silicon carbide interface and reveal the Dirac nature of the charge carriers. Patterned structures show quantum confinement of electrons and phase coherence lengths beyond 1 micrometer at 4 kelvin, with mobilities exceeding 2.5 square meters per volt-second. All-graphene electronically coherent devices and device architectures are envisaged.

4,848 citations

Journal Article
TL;DR: The transport properties, which are closely related to those of carbon nanotubes, are dominated by the single epitaxial graphene layer at the silicon carbide interface and reveal the Dirac nature of the charge carriers.
Abstract: Ultrathin epitaxial graphite was grown on single-crystal silicon carbide by vacuum graphitization. The material can be patterned using standard nanolithography methods. The transport properties, which are closely related to those of carbon nanotubes, are dominated by the single epitaxial graphene layer at the silicon carbide interface and reveal the Dirac nature of the charge carriers. Patterned structures show quantum confinement of electrons and phase coherence lengths beyond 1 micrometer at 4 kelvin, with mobilities exceeding 2.5 square meters per volt-second. All-graphene electronically coherent devices and device architectures are envisaged.

4,578 citations

Journal ArticleDOI
TL;DR: In this paper, the status of ambient temperature sodium ion batteries is reviewed in light of recent developments in anode, electrolyte and cathode materials, including high performance layered transition metal oxides and polyanionic compounds.
Abstract: The status of ambient temperature sodium ion batteries is reviewed in light of recent developments in anode, electrolyte and cathode materials. These devices, although early in their stage of development, are promising for large-scale grid storage applications due to the abundance and very low cost of sodium-containing precursors used to make the components. The engineering knowledge developed recently for highly successful Li ion batteries can be leveraged to ensure rapid progress in this area, although different electrode materials and electrolytes will be required for dual intercalation systems based on sodium. In particular, new anode materials need to be identified, since the graphite anode, commonly used in lithium systems, does not intercalate sodium to any appreciable extent. A wider array of choices is available for cathodes, including high performance layered transition metal oxides and polyanionic compounds. Recent developments in electrodes are encouraging, but a great deal of research is necessary, particularly in new electrolytes, and the understanding of the SEI films. The engineering modeling calculations of Na-ion battery energy density indicate that 210 Wh kg−1 in gravimetric energy is possible for Na-ion batteries compared to existing Li-ion technology if a cathode capacity of 200 mAh g−1 and a 500 mAh g−1 anode can be discovered with an average cell potential of 3.3 V.

3,776 citations