scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Sodium-ion batteries: present and future

19 Jun 2017-Chemical Society Reviews (The Royal Society of Chemistry)-Vol. 46, Iss: 12, pp 3529-3614
TL;DR: Current research on materials is summarized and discussed and future directions for SIBs are proposed to provide important insights into scientific and practical issues in the development of S IBs.
Abstract: Energy production and storage technologies have attracted a great deal of attention for day-to-day applications. In recent decades, advances in lithium-ion battery (LIB) technology have improved living conditions around the globe. LIBs are used in most mobile electronic devices as well as in zero-emission electronic vehicles. However, there are increasing concerns regarding load leveling of renewable energy sources and the smart grid as well as the sustainability of lithium sources due to their limited availability and consequent expected price increase. Therefore, whether LIBs alone can satisfy the rising demand for small- and/or mid-to-large-format energy storage applications remains unclear. To mitigate these issues, recent research has focused on alternative energy storage systems. Sodium-ion batteries (SIBs) are considered as the best candidate power sources because sodium is widely available and exhibits similar chemistry to that of LIBs; therefore, SIBs are promising next-generation alternatives. Recently, sodiated layer transition metal oxides, phosphates and organic compounds have been introduced as cathode materials for SIBs. Simultaneously, recent developments have been facilitated by the use of select carbonaceous materials, transition metal oxides (or sulfides), and intermetallic and organic compounds as anodes for SIBs. Apart from electrode materials, suitable electrolytes, additives, and binders are equally important for the development of practical SIBs. Despite developments in electrode materials and other components, there remain several challenges, including cell design and electrode balancing, in the application of sodium ion cells. In this article, we summarize and discuss current research on materials and propose future directions for SIBs. This will provide important insights into scientific and practical issues in the development of SIBs.

Content maybe subject to copyright    Report

Citations
More filters
Journal ArticleDOI
TL;DR: In this article, a proof-of-concept study of using a novel approach to the glycine-nitrate process (GNP) to synthesize sodium vanadium phosphate (Na3V2(PO4)3 or NVP) materials with both high-energy (102 mAh g−1 at C/20) and high-power characteristics (60mAh g −1 at 20 C).
Abstract: Cost-effective methods need to be developed to lower the price of Na-ion battery (NIB) materials. This paper reports a proof-of-concept study of using a novel approach to the glycine-nitrate process (GNP) to synthesize sodium vanadium phosphate (Na3V2(PO4)3 or NVP) materials with both high-energy (102 mAh g−1 at C/20) and high-power characteristics (60 mAh g−1 at 20 C). Glucose-derived hard carbons (GDHCs) were optimized to reduce both sloping and irreversible capacity. The best results were achieved for electrodes with active material heat treated at 1400 °C and reduced Super P additive. Sloping region capacity 90 mAh g−1, irreversible capacity 47 mAh g−1, discharge capacity 272 mAh g−1 (of which plateau 155 mAh g−1) and 1st cycle coulombic efficiency (CE) 85% were demonstrated. GDHC||NVP full cell achieved 80 mAh g−1 (reversible) by NVP mass out of which 60 mAh g−1 was the plateau (3.4 V) region capacity. Full cell specific energy and energy density reached 189 Wh kg−1 and 104 Wh dm−3, respectively. After 80 cycles, including rate testing from C/20 to 10 C, the cell cycled at 65 mAh g−1 with 99.7% CE. With further optimization, this method can have very high industrial potential.

6 citations

Journal ArticleDOI
TL;DR: In this article, the defect chemistry, solution of dopants, and the diffusion of Mg ions were investigated using advanced atomistic modeling techniques, and it was shown that the most favorable defect is Mg-V anti-site cluster (0.53 eV/defect) assuming that a small percentage of V3+ and V2+ ions would exchange their positions.
Abstract: MgV2O4 is a vanadium spinel considered for rechargeable magnesium ion batteries. Its defect chemistry, solution of dopants, and the diffusion of Mg ions are investigated using advanced atomistic modeling techniques. The energetically most favorable defect is Mg–V anti-site cluster (0.53 eV/defect) assuming that a small percentage of Mg2+ and V3+ ions would exchange their positions, particularly at higher temperatures. Reaction energies for the loss of MgO via MgO Schottky and the formation of Mg vacancies via Mg Frenkel are calculated to be 5.13 eV/defect and 5.23 eV/defect, respectively, suggesting that the concentrations of these two defects will not be significant. The most favorable diffusion mechanism of Mg ions is a three-dimensional pathway, where the activation energy of migration is 0.52 eV. The formation of Mg interstitials and O vacancies can be facilitated by doping with Co2+ at the V site in MgV2O4. The electronic structures of the favorable dopants calculated using the density functional theory are discussed.

6 citations

Journal ArticleDOI
TL;DR: In this article , the authors reported an anomalous O3-Na2/3Ni1/3Ti 2/3O2 layered oxide as an ultrastable and high-rate anode material for SIBs.
Abstract: Sodium-ion batteries (SIBs) are currently the most promising candidates for large-scale energy storage devices owing to their low cost and abundant resources. Titanium-based layered oxides have attracted widespread attention as promising anode materials due to delivering a safe potential of about 0.7 V (vs Na+/Na) and a small volume contraction during cycles; P2-type Ti-based layered oxides are typically reported, due to the challenging synthesis of the O3-type counterpart resulting from the high percentage of unstable Ti3+. Herein, we report an anomalous O3-Na2/3Ni1/3Ti2/3O2 layered oxide as an ultrastable and high-rate anode material for SIBs. The anode material delivers a reversible capacity of 112 mA h g-1 after 300 cycles at 0.1 C, a good capacity retention rate of 91% after 1400 cycles at 2 C, and, in particular, a capacity of 52 mA h g-1 even at a high rate of 20 C (1780 mA g-1). Furthermore, the in situ X-ray diffraction monitoring reveals no phase transitions and almost zero strain both underlie the good long-cycle stability. The measured high apparent Na+ diffusion coefficient (2.06 × 10-10 cm2 s-1) and the low migration energy barrier (0.59 eV) from density functional theory calculations are responsible for the superior rate capability. Our results promise advanced high-performance O3-type Ti-based layered oxides as promising anode materials toward application for SIBs.

6 citations

References
More filters
Journal ArticleDOI
18 Nov 2011-Science
TL;DR: The battery systems reviewed here include sodium-sulfur batteries that are commercially available for grid applications, redox-flow batteries that offer low cost, and lithium-ion batteries whose development for commercial electronics and electric vehicles is being applied to grid storage.
Abstract: The increasing interest in energy storage for the grid can be attributed to multiple factors, including the capital costs of managing peak demands, the investments needed for grid reliability, and the integration of renewable energy sources. Although existing energy storage is dominated by pumped hydroelectric, there is the recognition that battery systems can offer a number of high-value opportunities, provided that lower costs can be obtained. The battery systems reviewed here include sodium-sulfur batteries that are commercially available for grid applications, redox-flow batteries that offer low cost, and lithium-ion batteries whose development for commercial electronics and electric vehicles is being applied to grid storage.

11,144 citations

Journal ArticleDOI
26 May 2006-Science
TL;DR: In this paper, a single epitaxial graphene layer at the silicon carbide interface is shown to reveal the Dirac nature of the charge carriers, and all-graphene electronically coherent devices and device architectures are envisaged.
Abstract: Ultrathin epitaxial graphite was grown on single-crystal silicon carbide by vacuum graphitization. The material can be patterned using standard nanolithography methods. The transport properties, which are closely related to those of carbon nanotubes, are dominated by the single epitaxial graphene layer at the silicon carbide interface and reveal the Dirac nature of the charge carriers. Patterned structures show quantum confinement of electrons and phase coherence lengths beyond 1 micrometer at 4 kelvin, with mobilities exceeding 2.5 square meters per volt-second. All-graphene electronically coherent devices and device architectures are envisaged.

4,848 citations

Journal Article
TL;DR: The transport properties, which are closely related to those of carbon nanotubes, are dominated by the single epitaxial graphene layer at the silicon carbide interface and reveal the Dirac nature of the charge carriers.
Abstract: Ultrathin epitaxial graphite was grown on single-crystal silicon carbide by vacuum graphitization. The material can be patterned using standard nanolithography methods. The transport properties, which are closely related to those of carbon nanotubes, are dominated by the single epitaxial graphene layer at the silicon carbide interface and reveal the Dirac nature of the charge carriers. Patterned structures show quantum confinement of electrons and phase coherence lengths beyond 1 micrometer at 4 kelvin, with mobilities exceeding 2.5 square meters per volt-second. All-graphene electronically coherent devices and device architectures are envisaged.

4,578 citations

Journal ArticleDOI
TL;DR: In this paper, the status of ambient temperature sodium ion batteries is reviewed in light of recent developments in anode, electrolyte and cathode materials, including high performance layered transition metal oxides and polyanionic compounds.
Abstract: The status of ambient temperature sodium ion batteries is reviewed in light of recent developments in anode, electrolyte and cathode materials. These devices, although early in their stage of development, are promising for large-scale grid storage applications due to the abundance and very low cost of sodium-containing precursors used to make the components. The engineering knowledge developed recently for highly successful Li ion batteries can be leveraged to ensure rapid progress in this area, although different electrode materials and electrolytes will be required for dual intercalation systems based on sodium. In particular, new anode materials need to be identified, since the graphite anode, commonly used in lithium systems, does not intercalate sodium to any appreciable extent. A wider array of choices is available for cathodes, including high performance layered transition metal oxides and polyanionic compounds. Recent developments in electrodes are encouraging, but a great deal of research is necessary, particularly in new electrolytes, and the understanding of the SEI films. The engineering modeling calculations of Na-ion battery energy density indicate that 210 Wh kg−1 in gravimetric energy is possible for Na-ion batteries compared to existing Li-ion technology if a cathode capacity of 200 mAh g−1 and a 500 mAh g−1 anode can be discovered with an average cell potential of 3.3 V.

3,776 citations