scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Sodium-ion batteries: present and future

19 Jun 2017-Chemical Society Reviews (The Royal Society of Chemistry)-Vol. 46, Iss: 12, pp 3529-3614
TL;DR: Current research on materials is summarized and discussed and future directions for SIBs are proposed to provide important insights into scientific and practical issues in the development of S IBs.
Abstract: Energy production and storage technologies have attracted a great deal of attention for day-to-day applications. In recent decades, advances in lithium-ion battery (LIB) technology have improved living conditions around the globe. LIBs are used in most mobile electronic devices as well as in zero-emission electronic vehicles. However, there are increasing concerns regarding load leveling of renewable energy sources and the smart grid as well as the sustainability of lithium sources due to their limited availability and consequent expected price increase. Therefore, whether LIBs alone can satisfy the rising demand for small- and/or mid-to-large-format energy storage applications remains unclear. To mitigate these issues, recent research has focused on alternative energy storage systems. Sodium-ion batteries (SIBs) are considered as the best candidate power sources because sodium is widely available and exhibits similar chemistry to that of LIBs; therefore, SIBs are promising next-generation alternatives. Recently, sodiated layer transition metal oxides, phosphates and organic compounds have been introduced as cathode materials for SIBs. Simultaneously, recent developments have been facilitated by the use of select carbonaceous materials, transition metal oxides (or sulfides), and intermetallic and organic compounds as anodes for SIBs. Apart from electrode materials, suitable electrolytes, additives, and binders are equally important for the development of practical SIBs. Despite developments in electrode materials and other components, there remain several challenges, including cell design and electrode balancing, in the application of sodium ion cells. In this article, we summarize and discuss current research on materials and propose future directions for SIBs. This will provide important insights into scientific and practical issues in the development of SIBs.

Content maybe subject to copyright    Report

Citations
More filters
Journal ArticleDOI
TL;DR: It is indicated that the contribution of partial pseudocapacitive behavior greatly improves the rate capability for SIBs, where a high capacity retention can be obtained when the current densities range from 0.1 to 3 A g-1, which could push forward the development of practical applications of transition-metal diselenide-based anodes in LIBs and S IBs.
Abstract: Transition-metal diselenides have been extensively studied as desirable anode candidates for both lithium-ion batteries (LIBs) and sodium-ion batteries (SIBs) because of their high theoretical capa...

94 citations

Journal ArticleDOI
01 Jul 2018-Small
TL;DR: According to the electrochemical analysis and ex-situ measurements, it can be inferred that the enhanced apparent diffusion coefficient and improved insertion/extraction performance of electrode have been obtained by building this new morphology.
Abstract: Prussian blue and its analogs are regarded as the promising cathodes for sodium-ion batteries (SIBs). Recently, various special structures are constructed to improve the electrochemical properties of these materials. In this study, a novel architecture of Prussian blue analogs with large cavity and multilayer shells is investigated as cathode material for SIBs. Because the hollow structure can relieve volume expansion and core-shell heterostructure can optimize interfacial properties, the complex structure materials exhibited a highly initial capacity of 123 mA h g-1 and a long cycle life. After 600 cycles, the reversible capacity of the electrode still maintains at 102 mA h g-1 without significant voltage decay, indicating a superior structure stability and sodium storage kinetics. Even at high current density of 3200 mA g-1 , the electrode still delivers a considerable capacity above 52 mA h g-1 . According to the electrochemical analysis and ex-situ measurements, it can be inferred that the enhanced apparent diffusion coefficient and improved insertion/extraction performance of electrode have been obtained by building this new morphology.

93 citations

Journal ArticleDOI
TL;DR: An orbital-level understanding of the operating potentials of the nominal redox couples for O3-NaMO2 cathodes is provided and the strategy described could be used to tailor electrodes for improved performance.
Abstract: Layered O3-type sodium oxides (NaMO2 , M=transition metal) commonly exhibit an O3-P3 phase transition, which occurs at a low redox voltage of about 3 V (vs. Na+ /Na) during sodium extraction and insertion, with the result that almost 50 % of their total capacity lies at this low voltage region, and they possess insufficient energy density as cathode materials for sodium-ion batteries (NIBs). Therefore, development of high-voltage O3-type cathodes remains challenging because it is difficult to raise the phase-transition voltage by reasonable structure modulation. A new example of O3-type sodium insertion materials is presented for use in NIBs. The designed O3-type Na0.7 Ni0.35 Sn0.65 O2 material displays a highest redox potential of 3.7 V (vs. Na+ /Na) among the reported O3-type materials based on the Ni2+ /Ni3+ couple, by virtue of its increased Ni-O bond ionicity through reduced orbital overlap between transition metals and oxygen within the MO2 slabs. This study provides an orbital-level understanding of the operating potentials of the nominal redox couples for O3-NaMO2 cathodes. The strategy described could be used to tailor electrodes for improved performance.

93 citations

Journal ArticleDOI
TL;DR: In this paper, the authors summarized the latest achievements of active materials design, mechanistic understanding, and exploration of new active materials and proposed new directions in tuning the architecture and enhancing the electrochemical performances of high-performance anodes and cathodes.

92 citations

References
More filters
Journal ArticleDOI
18 Nov 2011-Science
TL;DR: The battery systems reviewed here include sodium-sulfur batteries that are commercially available for grid applications, redox-flow batteries that offer low cost, and lithium-ion batteries whose development for commercial electronics and electric vehicles is being applied to grid storage.
Abstract: The increasing interest in energy storage for the grid can be attributed to multiple factors, including the capital costs of managing peak demands, the investments needed for grid reliability, and the integration of renewable energy sources. Although existing energy storage is dominated by pumped hydroelectric, there is the recognition that battery systems can offer a number of high-value opportunities, provided that lower costs can be obtained. The battery systems reviewed here include sodium-sulfur batteries that are commercially available for grid applications, redox-flow batteries that offer low cost, and lithium-ion batteries whose development for commercial electronics and electric vehicles is being applied to grid storage.

11,144 citations

Journal ArticleDOI
26 May 2006-Science
TL;DR: In this paper, a single epitaxial graphene layer at the silicon carbide interface is shown to reveal the Dirac nature of the charge carriers, and all-graphene electronically coherent devices and device architectures are envisaged.
Abstract: Ultrathin epitaxial graphite was grown on single-crystal silicon carbide by vacuum graphitization. The material can be patterned using standard nanolithography methods. The transport properties, which are closely related to those of carbon nanotubes, are dominated by the single epitaxial graphene layer at the silicon carbide interface and reveal the Dirac nature of the charge carriers. Patterned structures show quantum confinement of electrons and phase coherence lengths beyond 1 micrometer at 4 kelvin, with mobilities exceeding 2.5 square meters per volt-second. All-graphene electronically coherent devices and device architectures are envisaged.

4,848 citations

Journal Article
TL;DR: The transport properties, which are closely related to those of carbon nanotubes, are dominated by the single epitaxial graphene layer at the silicon carbide interface and reveal the Dirac nature of the charge carriers.
Abstract: Ultrathin epitaxial graphite was grown on single-crystal silicon carbide by vacuum graphitization. The material can be patterned using standard nanolithography methods. The transport properties, which are closely related to those of carbon nanotubes, are dominated by the single epitaxial graphene layer at the silicon carbide interface and reveal the Dirac nature of the charge carriers. Patterned structures show quantum confinement of electrons and phase coherence lengths beyond 1 micrometer at 4 kelvin, with mobilities exceeding 2.5 square meters per volt-second. All-graphene electronically coherent devices and device architectures are envisaged.

4,578 citations

Journal ArticleDOI
TL;DR: In this paper, the status of ambient temperature sodium ion batteries is reviewed in light of recent developments in anode, electrolyte and cathode materials, including high performance layered transition metal oxides and polyanionic compounds.
Abstract: The status of ambient temperature sodium ion batteries is reviewed in light of recent developments in anode, electrolyte and cathode materials. These devices, although early in their stage of development, are promising for large-scale grid storage applications due to the abundance and very low cost of sodium-containing precursors used to make the components. The engineering knowledge developed recently for highly successful Li ion batteries can be leveraged to ensure rapid progress in this area, although different electrode materials and electrolytes will be required for dual intercalation systems based on sodium. In particular, new anode materials need to be identified, since the graphite anode, commonly used in lithium systems, does not intercalate sodium to any appreciable extent. A wider array of choices is available for cathodes, including high performance layered transition metal oxides and polyanionic compounds. Recent developments in electrodes are encouraging, but a great deal of research is necessary, particularly in new electrolytes, and the understanding of the SEI films. The engineering modeling calculations of Na-ion battery energy density indicate that 210 Wh kg−1 in gravimetric energy is possible for Na-ion batteries compared to existing Li-ion technology if a cathode capacity of 200 mAh g−1 and a 500 mAh g−1 anode can be discovered with an average cell potential of 3.3 V.

3,776 citations