scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Sodium-ion batteries: present and future

19 Jun 2017-Chemical Society Reviews (The Royal Society of Chemistry)-Vol. 46, Iss: 12, pp 3529-3614
TL;DR: Current research on materials is summarized and discussed and future directions for SIBs are proposed to provide important insights into scientific and practical issues in the development of S IBs.
Abstract: Energy production and storage technologies have attracted a great deal of attention for day-to-day applications. In recent decades, advances in lithium-ion battery (LIB) technology have improved living conditions around the globe. LIBs are used in most mobile electronic devices as well as in zero-emission electronic vehicles. However, there are increasing concerns regarding load leveling of renewable energy sources and the smart grid as well as the sustainability of lithium sources due to their limited availability and consequent expected price increase. Therefore, whether LIBs alone can satisfy the rising demand for small- and/or mid-to-large-format energy storage applications remains unclear. To mitigate these issues, recent research has focused on alternative energy storage systems. Sodium-ion batteries (SIBs) are considered as the best candidate power sources because sodium is widely available and exhibits similar chemistry to that of LIBs; therefore, SIBs are promising next-generation alternatives. Recently, sodiated layer transition metal oxides, phosphates and organic compounds have been introduced as cathode materials for SIBs. Simultaneously, recent developments have been facilitated by the use of select carbonaceous materials, transition metal oxides (or sulfides), and intermetallic and organic compounds as anodes for SIBs. Apart from electrode materials, suitable electrolytes, additives, and binders are equally important for the development of practical SIBs. Despite developments in electrode materials and other components, there remain several challenges, including cell design and electrode balancing, in the application of sodium ion cells. In this article, we summarize and discuss current research on materials and propose future directions for SIBs. This will provide important insights into scientific and practical issues in the development of SIBs.

Content maybe subject to copyright    Report

Citations
More filters
Journal ArticleDOI
TL;DR: In this article, FeS nanocrystals embedded in a carbon network (FeS@C) were prepared by a homogeneous carbothermal reduction strategy, which demonstrated a long cycle life with relatively high initial coulombic efficiency (ICE), high capacity, and excellent rate capacity.
Abstract: Sodium ion batteries have attracted extensive attention due to their earth-abundant elements and potential for low cost. Iron-based materials not only satisfy these demands but also have high theoretical capacities and are of great commercial value. It is, therefore, necessary to conquer the problems of iron sulfide, including the synthesis method and insufficient cycle stability, from a practical perspective; however, only a few studies have focused on these points. In this work, FeS nanocrystals embedded in a carbon network (FeS@C) were prepared by a homogeneous carbothermal reduction strategy. The advantages of this preparation method are as follows: (1) low-cost and abundant raw materials, (2) green synthesis method without releasing sulfide, (3) simple production processes, and (4) easy large-scale production. The as-synthesized FeS@C demonstrates a long cycle life (97.6%, 3000 cycles) with relatively high initial coulombic efficiency (ICE), high capacity, and excellent rate capacity. The application of FeS@C was further confirmed via a pouch full cell.

76 citations

Journal ArticleDOI
TL;DR: In this paper, a scalable protocol for synthesizing two-dimensional (2D) holey cobalt sulfide (h-Co4S3) nanosheets is demonstrated for high-rate and long-life SIBs in an ether-based electrolyte of 1.0 M NaCF3SO3.
Abstract: Sodium ion batteries (SIBs) for large-scale grid applications are facing great challenges in terms of development of high-performance electrode materials and screening of suitable electrolytes. Herein, a versatile and scalable protocol for synthesizing two-dimensional (2D) holey cobalt sulfide (h-Co4S3) nanosheets is demonstrated for high-rate and long-life SIBs in an ether-based electrolyte of 1.0 M NaCF3SO3 in diglyme. The 2D h-Co4S3 nanosheets are prepared by sulfuration of leaf-like cobalt based metal–organic frameworks (CoMOFs), and subsequent annealing treatment. Benefiting from the nanosheet nature of in-plane nanopores (10–30 nm), ultra-thinness (<30 nm), crumpled morphology, and micron-scale lateral size that can provide more active sites and enhanced sodiation/desodiation kinetics, the resulting h-Co4S3 nanosheets achieve a high reversible capacity of 571 mA h g−1 at 0.1 A g−1, and long-life cycling stability with a retention of 80% after 400 cycles for SIBs. Furthermore, theoretical simulation reveals the enhanced structural stability of h-Co4S3 nanosheets with a lower binding energy (0.31 eV) of the Co–O bond in the ether-based electrolyte than that in the carbonate-based electrolyte. Notably, the h-Co4S3 anode offers an exceptional rate capacity of 257 mA h g−1 at 12 A g−1, outperforming most reported cobalt sulfide-based anodes. This strategy will pave a new way to rationally construct MOF-derived 2D nanostructures for various energy-related applications.

76 citations

Journal ArticleDOI
TL;DR: Rationally engineered the heterointerface by designing the Fe1−xS/MoS2 heterostructure with abundant “ion reservoir” to endow the electrode with excellent cycling stability and rate capability, which is proved by a series of in and ex situ electrochemical investigations.
Abstract: Improving the cycling stability of metal sulfide-based anode materials at high rate is of great significance for advanced sodium ion batteries. However, the sluggish reaction kinetics is a big obstacle for the development of high-performance sodium storage electrodes. Herein, we have rationally engineered the heterointerface by designing the Fe1−xS/MoS2 heterostructure with abundant “ion reservoir” to endow the electrode with excellent cycling stability and rate capability, which is proved by a series of in and ex situ electrochemical investigations. Density functional theory calculations further reveal that the heterointerface greatly decreases sodium ion diffusion barrier and facilitates charge-transfer kinetics. Our present findings not only provide a deep analysis on the correlation between the structure and performance, but also draw inspiration for rational heterointerface engineering toward the next-generation high-performance energy storage devices.

75 citations

Journal ArticleDOI
TL;DR: In this paper, a novel, high-performance anode for SIBs based on an oxygen-deficient vanadium oxide (VO/V2O3) heterostructure embedded in porous nitrogen-doped carbon (denoted as VNC) derived by a very simple and localized phase transition from a vanadium glycolate precursor has been demonstrated.
Abstract: Vanadium oxides are a class of promising anode candidates for sodium-ion batteries (SIBs) with high theoretical capacity and low cost. However, their practical application has been impeded by the low electronic conductivity, sluggish ionic transport and large volume change upon sodiation. Herein, a novel, high-performance anode for SIBs based on an oxygen-deficient vanadium oxide (VO/V2O3) heterostructure embedded in porous nitrogen-doped carbon (denoted as VNC) derived by a very simple and localized phase transition from a vanadium glycolate precursor has been demonstrated. The strong synergy of the hierarchically porous framework, VO/V2O3 phase heterojunctions with oxygen vacancy defects, and interfacial coupling with N-doped carbon (NC) efficiently promotes the electron/ion transport and alleviates the volume change during the sodiation/de-sodiation process. Electrochemical evaluation reveals that this novel VNC anode material manifests high sodium-ion storage capability and stability. Ex situ X-ray diffraction (XRD), transmission electron microscopy (TEM) and X-ray photoelectron spectroscopy (XPS) analyses show that (a portion of) the vanadium oxides can be converted into vanadium metal and sodium oxides. First-principles density functional theory (DFT) calculations reveal that coupling with NC effectively enhances the interfacial interactions and charge transfer between vanadium oxides and carbon, as well as the conversion reaction kinetics during sodiation/desodiation. The present work offers a viable strategy for the rational design and exploration of novel heterostructure composite electrodes for a wide array of beyond-lithium-ion batteries.

75 citations

References
More filters
Journal ArticleDOI
18 Nov 2011-Science
TL;DR: The battery systems reviewed here include sodium-sulfur batteries that are commercially available for grid applications, redox-flow batteries that offer low cost, and lithium-ion batteries whose development for commercial electronics and electric vehicles is being applied to grid storage.
Abstract: The increasing interest in energy storage for the grid can be attributed to multiple factors, including the capital costs of managing peak demands, the investments needed for grid reliability, and the integration of renewable energy sources. Although existing energy storage is dominated by pumped hydroelectric, there is the recognition that battery systems can offer a number of high-value opportunities, provided that lower costs can be obtained. The battery systems reviewed here include sodium-sulfur batteries that are commercially available for grid applications, redox-flow batteries that offer low cost, and lithium-ion batteries whose development for commercial electronics and electric vehicles is being applied to grid storage.

11,144 citations

Journal ArticleDOI
26 May 2006-Science
TL;DR: In this paper, a single epitaxial graphene layer at the silicon carbide interface is shown to reveal the Dirac nature of the charge carriers, and all-graphene electronically coherent devices and device architectures are envisaged.
Abstract: Ultrathin epitaxial graphite was grown on single-crystal silicon carbide by vacuum graphitization. The material can be patterned using standard nanolithography methods. The transport properties, which are closely related to those of carbon nanotubes, are dominated by the single epitaxial graphene layer at the silicon carbide interface and reveal the Dirac nature of the charge carriers. Patterned structures show quantum confinement of electrons and phase coherence lengths beyond 1 micrometer at 4 kelvin, with mobilities exceeding 2.5 square meters per volt-second. All-graphene electronically coherent devices and device architectures are envisaged.

4,848 citations

Journal Article
TL;DR: The transport properties, which are closely related to those of carbon nanotubes, are dominated by the single epitaxial graphene layer at the silicon carbide interface and reveal the Dirac nature of the charge carriers.
Abstract: Ultrathin epitaxial graphite was grown on single-crystal silicon carbide by vacuum graphitization. The material can be patterned using standard nanolithography methods. The transport properties, which are closely related to those of carbon nanotubes, are dominated by the single epitaxial graphene layer at the silicon carbide interface and reveal the Dirac nature of the charge carriers. Patterned structures show quantum confinement of electrons and phase coherence lengths beyond 1 micrometer at 4 kelvin, with mobilities exceeding 2.5 square meters per volt-second. All-graphene electronically coherent devices and device architectures are envisaged.

4,578 citations

Journal ArticleDOI
TL;DR: In this paper, the status of ambient temperature sodium ion batteries is reviewed in light of recent developments in anode, electrolyte and cathode materials, including high performance layered transition metal oxides and polyanionic compounds.
Abstract: The status of ambient temperature sodium ion batteries is reviewed in light of recent developments in anode, electrolyte and cathode materials. These devices, although early in their stage of development, are promising for large-scale grid storage applications due to the abundance and very low cost of sodium-containing precursors used to make the components. The engineering knowledge developed recently for highly successful Li ion batteries can be leveraged to ensure rapid progress in this area, although different electrode materials and electrolytes will be required for dual intercalation systems based on sodium. In particular, new anode materials need to be identified, since the graphite anode, commonly used in lithium systems, does not intercalate sodium to any appreciable extent. A wider array of choices is available for cathodes, including high performance layered transition metal oxides and polyanionic compounds. Recent developments in electrodes are encouraging, but a great deal of research is necessary, particularly in new electrolytes, and the understanding of the SEI films. The engineering modeling calculations of Na-ion battery energy density indicate that 210 Wh kg−1 in gravimetric energy is possible for Na-ion batteries compared to existing Li-ion technology if a cathode capacity of 200 mAh g−1 and a 500 mAh g−1 anode can be discovered with an average cell potential of 3.3 V.

3,776 citations