scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Sodium-ion batteries: present and future

19 Jun 2017-Chemical Society Reviews (The Royal Society of Chemistry)-Vol. 46, Iss: 12, pp 3529-3614
TL;DR: Current research on materials is summarized and discussed and future directions for SIBs are proposed to provide important insights into scientific and practical issues in the development of S IBs.
Abstract: Energy production and storage technologies have attracted a great deal of attention for day-to-day applications. In recent decades, advances in lithium-ion battery (LIB) technology have improved living conditions around the globe. LIBs are used in most mobile electronic devices as well as in zero-emission electronic vehicles. However, there are increasing concerns regarding load leveling of renewable energy sources and the smart grid as well as the sustainability of lithium sources due to their limited availability and consequent expected price increase. Therefore, whether LIBs alone can satisfy the rising demand for small- and/or mid-to-large-format energy storage applications remains unclear. To mitigate these issues, recent research has focused on alternative energy storage systems. Sodium-ion batteries (SIBs) are considered as the best candidate power sources because sodium is widely available and exhibits similar chemistry to that of LIBs; therefore, SIBs are promising next-generation alternatives. Recently, sodiated layer transition metal oxides, phosphates and organic compounds have been introduced as cathode materials for SIBs. Simultaneously, recent developments have been facilitated by the use of select carbonaceous materials, transition metal oxides (or sulfides), and intermetallic and organic compounds as anodes for SIBs. Apart from electrode materials, suitable electrolytes, additives, and binders are equally important for the development of practical SIBs. Despite developments in electrode materials and other components, there remain several challenges, including cell design and electrode balancing, in the application of sodium ion cells. In this article, we summarize and discuss current research on materials and propose future directions for SIBs. This will provide important insights into scientific and practical issues in the development of SIBs.

Content maybe subject to copyright    Report

Citations
More filters
Journal ArticleDOI
TL;DR: The synergetic interaction between MnO and NDCT in the NDCT@MnO nanocomposites provides high rate capability and long-term cycling life due to high surface area, electrical conductivity, enhanced diffusion rate of Na+ ions, and prevented agglomeration and high stability of MnO nanoparticles.
Abstract: Sodium ion batteries (SIBs) have attracted increasing attentions as promising alternatives to lithium ion batteries (LIBs). Herein, we design and synthesize ultrasmall MnO nanoparticles (∼4 nm) supported on nitrogen-doped carbon nanotubes (NDCT@MnO) as promising anode materials of SIBs. It is revealed that the carbonization temperature can greatly influence the structural features and thus the Na-storage behavior of the NDCT@MnO nanocomposites. The synergetic interaction between MnO and NDCT in the NDCT@MnO nanocomposites provides high rate capability and long-term cycling life due to high surface area, electrical conductivity, enhanced diffusion rate of Na+ ions, and prevented agglomeration and high stability of MnO nanoparticles. The resulting SIBs provide a high reversible specific capacity of 709 mAh g–1 at a current density of 0.1 A g–1 and a high capacity of 536 mAh g–1 almost without loss after 250 cycles at 0.2 A g–1. Even at a high current density of 5 A g–1, a capacity of 273 mAh g–1 can be main...

59 citations

Journal ArticleDOI
TL;DR: In this paper, the essential role of phosphorous-containing electrolytes and a comprehensive perspective for next-generation intrinsically safe rechargeable batteries is provided. But, the main bottleneck for their broad application lies in the interfacial incompatibility.

59 citations

Journal ArticleDOI
Xuan Xie1, Minglei Mao1, Shihan Qi1, Jianmin Ma1, Jianmin Ma2 
Abstract: Alkali-metal (Li, Na, K) ion batteries have practically or potentially been widely used as power sources for portable electronic devices and electric vehicles. However, the lack of fast and high-capacity anodes is restricting their development. As a new member of two-dimensional transition metal dichalcogenides, rhenium disulfide (ReS2), with a large interlayer space and weak van der Waals interaction between layers, can enable a large number of intercalation ions to diffuse easily between the layers. In this review, we summarize the recent progress of ReS2 as an electrode for alkali-metal ion batteries, mainly focusing on the synthesis method, structures, the reaction mechanism, and the corresponding electrochemical performance. In addition, the perspective and challenges of ReS2 electrodes are also discussed. This review will provide comprehensive knowledge of ReS2 electrodes and guidelines for exploring more applications in batteries.

58 citations

Journal ArticleDOI
Peiyu Hou1, Jiangmei Yin1, Xianhang Lu1, Jiaming Li1, Yue Zhao1, Xijin Xu1 
TL;DR: The superior sodium storage performance of this layered P3/P2 and spinel intergrowth nanocomposite makes it a promising candidate as a long-life and high-rate cathode for SIBs.
Abstract: Layered sodium transition-metal oxides, NaxMeO2, with large theoretical capacity are regarded as an important class of cathode materials for sodium-ion batteries (SIBs). However, they usually exhibit inferior thermodynamic stability and sluggish Na+ kinetics due to the unwanted phase transitions and large Na+-ionic radius. In this work, considering the beneficial synergistic effects of layered P2/P3 and Fdm spinel phases, a stable layered/spinel intergrowth nanocomposite Na0.5[Ni0.2Co0.15Mn0.65]O2 is rationally designed and successfully prepared via a co-precipitation route and a subsequent solid-state reaction, and the triphase synergy in this layered/spinel nanocomposite is demonstrated. In Na/Na0.5[Ni0.2Co0.15Mn0.65]O2 half-cells, it delivers a high specific capacity of ∼180 mA h g−1 and a good cycling stability, with a capacity retention of 87.6% after 100 cycles, at a rate of 0.1C between 1.5 and 4.0 V (vs. Na/Na+). The large reversible capacity of 105 mA h g−1 is also achieved even at a high rate of 10C, indicating high-rate capability. Besides, the full-cells using this nanocomposite as the cathode and hard carbon as the anode exhibit long-term cycle-life and high-power properties, indicating the expected merits of layered/spinel mixed phases. The superior sodium storage performance of this layered P3/P2 and spinel intergrowth nanocomposite makes it a promising candidate as a long-life and high-rate cathode for SIBs.

58 citations

References
More filters
Journal ArticleDOI
18 Nov 2011-Science
TL;DR: The battery systems reviewed here include sodium-sulfur batteries that are commercially available for grid applications, redox-flow batteries that offer low cost, and lithium-ion batteries whose development for commercial electronics and electric vehicles is being applied to grid storage.
Abstract: The increasing interest in energy storage for the grid can be attributed to multiple factors, including the capital costs of managing peak demands, the investments needed for grid reliability, and the integration of renewable energy sources. Although existing energy storage is dominated by pumped hydroelectric, there is the recognition that battery systems can offer a number of high-value opportunities, provided that lower costs can be obtained. The battery systems reviewed here include sodium-sulfur batteries that are commercially available for grid applications, redox-flow batteries that offer low cost, and lithium-ion batteries whose development for commercial electronics and electric vehicles is being applied to grid storage.

11,144 citations

Journal ArticleDOI
26 May 2006-Science
TL;DR: In this paper, a single epitaxial graphene layer at the silicon carbide interface is shown to reveal the Dirac nature of the charge carriers, and all-graphene electronically coherent devices and device architectures are envisaged.
Abstract: Ultrathin epitaxial graphite was grown on single-crystal silicon carbide by vacuum graphitization. The material can be patterned using standard nanolithography methods. The transport properties, which are closely related to those of carbon nanotubes, are dominated by the single epitaxial graphene layer at the silicon carbide interface and reveal the Dirac nature of the charge carriers. Patterned structures show quantum confinement of electrons and phase coherence lengths beyond 1 micrometer at 4 kelvin, with mobilities exceeding 2.5 square meters per volt-second. All-graphene electronically coherent devices and device architectures are envisaged.

4,848 citations

Journal Article
TL;DR: The transport properties, which are closely related to those of carbon nanotubes, are dominated by the single epitaxial graphene layer at the silicon carbide interface and reveal the Dirac nature of the charge carriers.
Abstract: Ultrathin epitaxial graphite was grown on single-crystal silicon carbide by vacuum graphitization. The material can be patterned using standard nanolithography methods. The transport properties, which are closely related to those of carbon nanotubes, are dominated by the single epitaxial graphene layer at the silicon carbide interface and reveal the Dirac nature of the charge carriers. Patterned structures show quantum confinement of electrons and phase coherence lengths beyond 1 micrometer at 4 kelvin, with mobilities exceeding 2.5 square meters per volt-second. All-graphene electronically coherent devices and device architectures are envisaged.

4,578 citations

Journal ArticleDOI
TL;DR: In this paper, the status of ambient temperature sodium ion batteries is reviewed in light of recent developments in anode, electrolyte and cathode materials, including high performance layered transition metal oxides and polyanionic compounds.
Abstract: The status of ambient temperature sodium ion batteries is reviewed in light of recent developments in anode, electrolyte and cathode materials. These devices, although early in their stage of development, are promising for large-scale grid storage applications due to the abundance and very low cost of sodium-containing precursors used to make the components. The engineering knowledge developed recently for highly successful Li ion batteries can be leveraged to ensure rapid progress in this area, although different electrode materials and electrolytes will be required for dual intercalation systems based on sodium. In particular, new anode materials need to be identified, since the graphite anode, commonly used in lithium systems, does not intercalate sodium to any appreciable extent. A wider array of choices is available for cathodes, including high performance layered transition metal oxides and polyanionic compounds. Recent developments in electrodes are encouraging, but a great deal of research is necessary, particularly in new electrolytes, and the understanding of the SEI films. The engineering modeling calculations of Na-ion battery energy density indicate that 210 Wh kg−1 in gravimetric energy is possible for Na-ion batteries compared to existing Li-ion technology if a cathode capacity of 200 mAh g−1 and a 500 mAh g−1 anode can be discovered with an average cell potential of 3.3 V.

3,776 citations