scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Sodium-ion batteries: present and future

19 Jun 2017-Chemical Society Reviews (The Royal Society of Chemistry)-Vol. 46, Iss: 12, pp 3529-3614
TL;DR: Current research on materials is summarized and discussed and future directions for SIBs are proposed to provide important insights into scientific and practical issues in the development of S IBs.
Abstract: Energy production and storage technologies have attracted a great deal of attention for day-to-day applications. In recent decades, advances in lithium-ion battery (LIB) technology have improved living conditions around the globe. LIBs are used in most mobile electronic devices as well as in zero-emission electronic vehicles. However, there are increasing concerns regarding load leveling of renewable energy sources and the smart grid as well as the sustainability of lithium sources due to their limited availability and consequent expected price increase. Therefore, whether LIBs alone can satisfy the rising demand for small- and/or mid-to-large-format energy storage applications remains unclear. To mitigate these issues, recent research has focused on alternative energy storage systems. Sodium-ion batteries (SIBs) are considered as the best candidate power sources because sodium is widely available and exhibits similar chemistry to that of LIBs; therefore, SIBs are promising next-generation alternatives. Recently, sodiated layer transition metal oxides, phosphates and organic compounds have been introduced as cathode materials for SIBs. Simultaneously, recent developments have been facilitated by the use of select carbonaceous materials, transition metal oxides (or sulfides), and intermetallic and organic compounds as anodes for SIBs. Apart from electrode materials, suitable electrolytes, additives, and binders are equally important for the development of practical SIBs. Despite developments in electrode materials and other components, there remain several challenges, including cell design and electrode balancing, in the application of sodium ion cells. In this article, we summarize and discuss current research on materials and propose future directions for SIBs. This will provide important insights into scientific and practical issues in the development of SIBs.

Content maybe subject to copyright    Report

Citations
More filters
Journal ArticleDOI
TL;DR: The current advances, existing limitations, along with the possible solutions in the pursuit of cathode materials with high voltage, fast kinetics, and long cycling stability are comprehensively covered and evaluated to guide the future design of aqueous ZIBs with a combination of high gravimetric energy density, good reversibility, and a long cycle life.
Abstract: Aqueous zinc ion batteries (ZIBs) are truly promising contenders for the future large-scale electrical energy storage applications due to their cost-effectiveness, environmental friendliness, intri...

726 citations

Journal ArticleDOI
TL;DR: In this article, the authors considered the use of hydrogen as a way of using fuel cells and showed that hydrogen can play a significant role for intermediate time storage of a few hours to several days, and even for intermediate scale capacity energy storage.
Abstract: Pumped-Storage of Water: It is the most efficient; it is developed in very large scale capacity storage facilities which require specific sites; nevertheless, in the future due to its long lifetime it will play a significant role for intermediate time storage of a few hours to several days, and even for intermediate scale capacity energy storage. Electrochemical Energy Storage in Batteries: It is now used locally in some places that are not connected to the electricity network and on the smart grids for frequency regulation or small peak production shifts. Examples include sodium sulfur batteries (NaS) which are used in Japan; redox flow batteries under development, and some large scale lithium–ion batteries (LIBs) that are used in specific places. Storage via Hydrogen: The development of hydrogen as a way of using fuel cells is considered and seems very interesting from the pollution point of view at the local scale. From the technical point of view, most of the problems are almost solved. Nevertheless, hydrogen has to be produced and stored; and in this case, the yield is quite low, similar to that of the internal combustion engine. Electricity storage via hydrogen requires water electrolysis, H2 gas storage, and electricity production in fuel cells, all of which leads to a low efficiency and therefore, significant energy loss during electricity storage.

719 citations

Journal ArticleDOI
TL;DR: This review comprehensively covering the studies on electrochemical materials for KIBs, including electrode and electrolyte materials and a discussion on recent achievements and remaining/emerging issues includes insights into electrode reactions and solid-state ionics and nonaqueous solution chemistry.
Abstract: Li-ion batteries (LIBs), commercialized in 1991, have the highest energy density among practical secondary batteries and are widely utilized in electronics, electric vehicles, and even stationary energy storage systems. Along with the expansion of their demand and application, concern about the resources of Li and Co is growing. Therefore, secondary batteries composed of earth-abundant elements are desired to complement LIBs. In recent years, K-ion batteries (KIBs) have attracted significant attention as potential alternatives to LIBs. Previous studies have developed positive and negative electrode materials for KIBs and demonstrated several unique advantages of KIBs over LIBs and Na-ion batteries (NIBs). Thus, besides being free from any scarce/toxic elements, the low standard electrode potentials of K/K+ electrodes lead to high operation voltages competitive to those observed in LIBs. Moreover, K+ ions exhibit faster ionic diffusion in electrolytes due to weaker interaction with solvents and anions than that of Li+ ions; this is essential to realize high-power KIBs. This review comprehensively covers the studies on electrochemical materials for KIBs, including electrode and electrolyte materials and a discussion on recent achievements and remaining/emerging issues. The review also includes insights into electrode reactions and solid-state ionics and nonaqueous solution chemistry as well as perspectives on the research-based development of KIBs compared to those of LIBs and NIBs.

651 citations

Journal ArticleDOI
TL;DR: In this article, the challenges and recent developments related to rechargeable zinc-ion battery research are presented, as well as recent research trends and directions on electrode materials that can store Zn2+ and electrolytes that can improve the battery performance.
Abstract: The zinc-ion battery (ZIB) is a 2 century-old technology but has recently attracted renewed interest owing to the possibility of switching from primary to rechargeable ZIBs. Nowadays, ZIBs employing a mild aqueous electrolyte are considered one of the most promising candidates for emerging energy storage systems (ESS) and portable electronics applications due to their environmental friendliness, safety, low cost, and acceptable energy density. However, there are many drawbacks associated with these batteries that have not yet been resolved. In this Review, we present the challenges and recent developments related to rechargeable ZIB research. Recent research trends and directions on electrode materials that can store Zn2+ and electrolytes that can improve the battery performance are comprehensively discussed.

612 citations

References
More filters
Journal ArticleDOI
07 Oct 2011-Science
TL;DR: It is shown that mixing Si nanopowder with alginate, a natural polysaccharide extracted from brown algae, yields a stable battery anode possessing reversible capacity eight times higher than that of the state-of-the-art graphitic anodes.
Abstract: The identification of similarities in the material requirements for applications of interest and those of living organisms provides opportunities to use renewable natural resources to develop better materials and design better devices. In our work, we harness this strategy to build high-capacity silicon (Si) nanopowder–based lithium (Li)–ion batteries with improved performance characteristics. Si offers more than one order of magnitude higher capacity than graphite, but it exhibits dramatic volume changes during electrochemical alloying and de-alloying with Li, which typically leads to rapid anode degradation. We show that mixing Si nanopowder with alginate, a natural polysaccharide extracted from brown algae, yields a stable battery anode possessing reversible capacity eight times higher than that of the state-of-the-art graphitic anodes.

1,523 citations

Journal ArticleDOI
06 Mar 2003-Nature
TL;DR: There is a marked resemblance in superconducting properties between the present material and high-Tc copper oxides, suggesting that the two systems have similar underlying physics.
Abstract: Since the discovery of high-transition-temperature (high-T(c)) superconductivity in layered copper oxides, many researchers have searched for similar behaviour in other layered metal oxides involving 3d-transition metals, such as cobalt and nickel. Such attempts have so far failed, with the result that the copper oxide layer is thought to be essential for superconductivity. Here we report that Na(x)CoO2*yH2O (x approximately 0.35, y approximately 1.3) is a superconductor with a T(c) of about 5 K. This compound consists of two-dimensional CoO2 layers separated by a thick insulating layer of Na+ ions and H2O molecules. There is a marked resemblance in superconducting properties between the present material and high-T(c) copper oxides, suggesting that the two systems have similar underlying physics.

1,495 citations

Journal ArticleDOI
TL;DR: In this paper, a state-of-the-art update on the most recent developments concerning the advanced heteroatom doping of carbon that goes beyond nitrogen is given, with respect to their boron-, sulphur-and phosphorus-doping.
Abstract: Heteroatom doped carbon materials represent one of the most prominent families of materials that are used in energy related applications, such as fuel cells, batteries, hydrogen storage or supercapacitors. While doping carbons with nitrogen atoms has experienced great progress throughout the past decades and yielded promising material concepts, also other doping candidates have gained the researchers' interest in the last few years. Boron is already relatively widely studied, and as its electronic situation is contrary to the one of nitrogen, codoping carbons with both heteroatoms can probably create synergistic effects. Sulphur and phosphorus have just recently entered the world of carbon synthesis, but already the first studies published prove their potential, especially as electrocatalysts in the cathodic compartment of fuel cells. Due to their size and their electronegativity being lower than those of carbon, structural distortions and changes of the charge densities are induced in the carbon materials. This article is to give a state of the art update on the most recent developments concerning the advanced heteroatom doping of carbon that goes beyond nitrogen. Doped carbon materials and their applications in energy devices are discussed with respect to their boron-, sulphur- and phosphorus-doping.

1,490 citations

Journal ArticleDOI
TL;DR: Expanded graphite is reported as a Na-ion battery anode, prepared through a process of oxidation and partial reduction on graphite, which has an enlarged interlayer lattice distance yet retains an analogous long-range-ordered layered structure to graphite.
Abstract: Graphite, as the most common anode for commercial Li-ion batteries, has been reported to have a very low capacity when used as a Na-ion battery anode. It is well known that electrochemical insertion of Na(+) into graphite is significantly hindered by the insufficient interlayer spacing. Here we report expanded graphite as a Na-ion battery anode. Prepared through a process of oxidation and partial reduction on graphite, expanded graphite has an enlarged interlayer lattice distance of 4.3 A yet retains an analogous long-range-ordered layered structure to graphite. In situ transmission electron microscopy has demonstrated that the Na-ion can be reversibly inserted into and extracted from expanded graphite. Galvanostatic studies show that expanded graphite can deliver a high reversible capacity of 284 mAh g(-1) at a current density of 20 mA g(-1), maintain a capacity of 184 mAh g(-1) at 100 mA g(-1), and retain 73.92% of its capacity after 2,000 cycles.

1,432 citations

Journal ArticleDOI
TL;DR: In this paper, the authors used ab initio band calculations to find that mixing of the S 3p states with the valence band can contribute to the band gap narrowing, based on the theoretical analyses.
Abstract: Titanium dioxide (TiO2) doped with sulfur (S) was synthesized by oxidation annealing of titanium disulfide (TiS2). According to the x-ray diffraction patterns, TiS2 turned into anatase TiO2 when annealed at 600 °C. The residual S atoms occupied O-atom sites in TiO2 to form Ti–S bonds. The S doping caused the absorption edge of TiO2 to be shifted into the lower-energy region. Based on the theoretical analyses using ab initio band calculations, mixing of the S 3p states with the valence band was found to contribute to the band gap narrowing.

1,322 citations