scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Sodium-ion batteries: present and future

19 Jun 2017-Chemical Society Reviews (The Royal Society of Chemistry)-Vol. 46, Iss: 12, pp 3529-3614
TL;DR: Current research on materials is summarized and discussed and future directions for SIBs are proposed to provide important insights into scientific and practical issues in the development of S IBs.
Abstract: Energy production and storage technologies have attracted a great deal of attention for day-to-day applications. In recent decades, advances in lithium-ion battery (LIB) technology have improved living conditions around the globe. LIBs are used in most mobile electronic devices as well as in zero-emission electronic vehicles. However, there are increasing concerns regarding load leveling of renewable energy sources and the smart grid as well as the sustainability of lithium sources due to their limited availability and consequent expected price increase. Therefore, whether LIBs alone can satisfy the rising demand for small- and/or mid-to-large-format energy storage applications remains unclear. To mitigate these issues, recent research has focused on alternative energy storage systems. Sodium-ion batteries (SIBs) are considered as the best candidate power sources because sodium is widely available and exhibits similar chemistry to that of LIBs; therefore, SIBs are promising next-generation alternatives. Recently, sodiated layer transition metal oxides, phosphates and organic compounds have been introduced as cathode materials for SIBs. Simultaneously, recent developments have been facilitated by the use of select carbonaceous materials, transition metal oxides (or sulfides), and intermetallic and organic compounds as anodes for SIBs. Apart from electrode materials, suitable electrolytes, additives, and binders are equally important for the development of practical SIBs. Despite developments in electrode materials and other components, there remain several challenges, including cell design and electrode balancing, in the application of sodium ion cells. In this article, we summarize and discuss current research on materials and propose future directions for SIBs. This will provide important insights into scientific and practical issues in the development of SIBs.

Content maybe subject to copyright    Report

Citations
More filters
Journal ArticleDOI
TL;DR: The current advances, existing limitations, along with the possible solutions in the pursuit of cathode materials with high voltage, fast kinetics, and long cycling stability are comprehensively covered and evaluated to guide the future design of aqueous ZIBs with a combination of high gravimetric energy density, good reversibility, and a long cycle life.
Abstract: Aqueous zinc ion batteries (ZIBs) are truly promising contenders for the future large-scale electrical energy storage applications due to their cost-effectiveness, environmental friendliness, intri...

726 citations

Journal ArticleDOI
TL;DR: In this article, the authors considered the use of hydrogen as a way of using fuel cells and showed that hydrogen can play a significant role for intermediate time storage of a few hours to several days, and even for intermediate scale capacity energy storage.
Abstract: Pumped-Storage of Water: It is the most efficient; it is developed in very large scale capacity storage facilities which require specific sites; nevertheless, in the future due to its long lifetime it will play a significant role for intermediate time storage of a few hours to several days, and even for intermediate scale capacity energy storage. Electrochemical Energy Storage in Batteries: It is now used locally in some places that are not connected to the electricity network and on the smart grids for frequency regulation or small peak production shifts. Examples include sodium sulfur batteries (NaS) which are used in Japan; redox flow batteries under development, and some large scale lithium–ion batteries (LIBs) that are used in specific places. Storage via Hydrogen: The development of hydrogen as a way of using fuel cells is considered and seems very interesting from the pollution point of view at the local scale. From the technical point of view, most of the problems are almost solved. Nevertheless, hydrogen has to be produced and stored; and in this case, the yield is quite low, similar to that of the internal combustion engine. Electricity storage via hydrogen requires water electrolysis, H2 gas storage, and electricity production in fuel cells, all of which leads to a low efficiency and therefore, significant energy loss during electricity storage.

719 citations

Journal ArticleDOI
TL;DR: This review comprehensively covering the studies on electrochemical materials for KIBs, including electrode and electrolyte materials and a discussion on recent achievements and remaining/emerging issues includes insights into electrode reactions and solid-state ionics and nonaqueous solution chemistry.
Abstract: Li-ion batteries (LIBs), commercialized in 1991, have the highest energy density among practical secondary batteries and are widely utilized in electronics, electric vehicles, and even stationary energy storage systems. Along with the expansion of their demand and application, concern about the resources of Li and Co is growing. Therefore, secondary batteries composed of earth-abundant elements are desired to complement LIBs. In recent years, K-ion batteries (KIBs) have attracted significant attention as potential alternatives to LIBs. Previous studies have developed positive and negative electrode materials for KIBs and demonstrated several unique advantages of KIBs over LIBs and Na-ion batteries (NIBs). Thus, besides being free from any scarce/toxic elements, the low standard electrode potentials of K/K+ electrodes lead to high operation voltages competitive to those observed in LIBs. Moreover, K+ ions exhibit faster ionic diffusion in electrolytes due to weaker interaction with solvents and anions than that of Li+ ions; this is essential to realize high-power KIBs. This review comprehensively covers the studies on electrochemical materials for KIBs, including electrode and electrolyte materials and a discussion on recent achievements and remaining/emerging issues. The review also includes insights into electrode reactions and solid-state ionics and nonaqueous solution chemistry as well as perspectives on the research-based development of KIBs compared to those of LIBs and NIBs.

651 citations

Journal ArticleDOI
TL;DR: In this article, the challenges and recent developments related to rechargeable zinc-ion battery research are presented, as well as recent research trends and directions on electrode materials that can store Zn2+ and electrolytes that can improve the battery performance.
Abstract: The zinc-ion battery (ZIB) is a 2 century-old technology but has recently attracted renewed interest owing to the possibility of switching from primary to rechargeable ZIBs. Nowadays, ZIBs employing a mild aqueous electrolyte are considered one of the most promising candidates for emerging energy storage systems (ESS) and portable electronics applications due to their environmental friendliness, safety, low cost, and acceptable energy density. However, there are many drawbacks associated with these batteries that have not yet been resolved. In this Review, we present the challenges and recent developments related to rechargeable ZIB research. Recent research trends and directions on electrode materials that can store Zn2+ and electrolytes that can improve the battery performance are comprehensively discussed.

612 citations

References
More filters
Journal ArticleDOI
TL;DR: Fe2O3 nanocrystals were uniformly anchored onto graphene nanosheets by a nanocasting technique, and the resulting composites were applied as anodes of sodium-ion batteries, exhibiting excellent cycling performance and rate capability.

295 citations

Journal ArticleDOI
01 May 2016-Small
TL;DR: Owing to the good mechanical flexibility and pronounced structure stability of carbon nanocages-encapsulated Co9 S8 , the as-obtained HCSP⊂GCC exhibit superior Li-ion storage.
Abstract: Novel electrode materials consisting of hollow cobalt sulfide nanoparticles embedded in graphitic carbon nanocages (HCSP⊂GCC) are facilely synthesized by a top-down route applying room-temperature synthesized Co-based zeolitic imidazolate framework (ZIF-67) as the template. Owing to the good mechanical flexibility and pronounced structure stability of carbon nanocages-encapsulated Co9 S8 , the as-obtained HCSP⊂GCC exhibit superior Li-ion storage. Working in the voltage of 1.0-3.0 V, they display a very high energy density (707 Wh kg(-1) ), superior rate capability (reversible capabilities of 536, 489, 438, 393, 345, and 278 mA h g(-1) at 0.2, 0.5, 1, 2, 5, and 10C, respectively), and stable cycling performance (≈26% capacity loss after long 150 cycles at 1C with a capacity retention of 365 mA h g(-1) ). When the work voltage is extended into 0.01-3.0 V, a higher stable capacity of 1600 mA h g(-1) at a current density of 100 mA g(-1) is still achieved.

291 citations

Journal ArticleDOI
TL;DR: In this paper, the electrochemistry and structural changes that occur during sodium insertion and removal from tin are studied by in-situ X-ray diffraction at 30°C.
Abstract: The electrochemistry and the structural changes that occur during sodium insertion and removal from tin are studied by in-situ X-ray diffraction at 30°C. The Sn vs. Na voltage curve has four distinct plateaus, corresponding to four two-phase regions during sodiation, and indicating that four Na-Sn binary alloys are formed. The alloy formed at full sodiation was found to be Na15Si4, as expected from the Na-Sn binary system at equilibrium. The three intermediate Na-Sn phases that form during sodiation have X-ray diffraction patterns that do not correspond to any known equilibrium phase of Na-Sn. More work is needed to characterize these new binary Na-Sn phases.

291 citations

Journal ArticleDOI
TL;DR: In this article, anatase TiO 2 nanoparticles were used as anode material for Na-ion batteries, highlighting the substantial influence of the electrolyte composition (salt and solvent) on the obtainable specific capacity, cycling stability, and particularly the coulombic efficiency.

290 citations

Journal ArticleDOI
TL;DR: In this paper, a new P2-type layered oxide, Na5/6[Li 1/4Mn3/4]O2 is prepared using a solid-state method.
Abstract: A new and promising P2-type layered oxide, Na5/6[Li1/4Mn3/4]O2 is prepared using a solid-state method. Detailed crystal structures of the sample are analyzed by synchrotron X-ray diffraction combined with high-resolution neutron diffraction. P2-type Na5/6[Li1/4Mn3/4]O2 consists of two MeO2 layers with partial in-plane √3a × √3a-type Li/Mn ordering. Na/Li ion-exchange in a molten salt results in a phase transition accompanied with glide of [Li1/4Mn3/4]O2 layers without the destruction of in-plane cation ordering. P2-type Na5/6[Li1/4Mn3/4]O2 translates into an O2-type layered structure with staking faults as the result of ion-exchange. Electrode performance of P2-type Na5/6[Li1/4Mn3/4]O2 and O2-type Lix[Li1/4Mn3/4]O2 is examined and compared in Na and Li cells, respectively. Both samples show large reversible capacity, ca. 200 mA h g−1, after charge to high voltage regardless of the difference in charge carriers. Structural analysis suggests that in-plane structural rearrangements, presumably associated with partial oxygen loss, occur in both samples after charge to a high-voltage region. Such structural activation process significantly influences electrode performance of the P2/O2-type phases, similar to O3-type Li2MnO3-based materials. Crystal structures, phase-transition mechanisms, and the possibility of the P2/O2-type phases as high-capacity and long-cycle-life electrode materials with the multi-functionality for both rechargeable Li/Na batteries are discussed in detail.

289 citations