scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Sodium-ion batteries: present and future

19 Jun 2017-Chemical Society Reviews (The Royal Society of Chemistry)-Vol. 46, Iss: 12, pp 3529-3614
TL;DR: Current research on materials is summarized and discussed and future directions for SIBs are proposed to provide important insights into scientific and practical issues in the development of S IBs.
Abstract: Energy production and storage technologies have attracted a great deal of attention for day-to-day applications. In recent decades, advances in lithium-ion battery (LIB) technology have improved living conditions around the globe. LIBs are used in most mobile electronic devices as well as in zero-emission electronic vehicles. However, there are increasing concerns regarding load leveling of renewable energy sources and the smart grid as well as the sustainability of lithium sources due to their limited availability and consequent expected price increase. Therefore, whether LIBs alone can satisfy the rising demand for small- and/or mid-to-large-format energy storage applications remains unclear. To mitigate these issues, recent research has focused on alternative energy storage systems. Sodium-ion batteries (SIBs) are considered as the best candidate power sources because sodium is widely available and exhibits similar chemistry to that of LIBs; therefore, SIBs are promising next-generation alternatives. Recently, sodiated layer transition metal oxides, phosphates and organic compounds have been introduced as cathode materials for SIBs. Simultaneously, recent developments have been facilitated by the use of select carbonaceous materials, transition metal oxides (or sulfides), and intermetallic and organic compounds as anodes for SIBs. Apart from electrode materials, suitable electrolytes, additives, and binders are equally important for the development of practical SIBs. Despite developments in electrode materials and other components, there remain several challenges, including cell design and electrode balancing, in the application of sodium ion cells. In this article, we summarize and discuss current research on materials and propose future directions for SIBs. This will provide important insights into scientific and practical issues in the development of SIBs.

Content maybe subject to copyright    Report

Citations
More filters
Journal ArticleDOI
TL;DR: The current advances, existing limitations, along with the possible solutions in the pursuit of cathode materials with high voltage, fast kinetics, and long cycling stability are comprehensively covered and evaluated to guide the future design of aqueous ZIBs with a combination of high gravimetric energy density, good reversibility, and a long cycle life.
Abstract: Aqueous zinc ion batteries (ZIBs) are truly promising contenders for the future large-scale electrical energy storage applications due to their cost-effectiveness, environmental friendliness, intri...

726 citations

Journal ArticleDOI
TL;DR: In this article, the authors considered the use of hydrogen as a way of using fuel cells and showed that hydrogen can play a significant role for intermediate time storage of a few hours to several days, and even for intermediate scale capacity energy storage.
Abstract: Pumped-Storage of Water: It is the most efficient; it is developed in very large scale capacity storage facilities which require specific sites; nevertheless, in the future due to its long lifetime it will play a significant role for intermediate time storage of a few hours to several days, and even for intermediate scale capacity energy storage. Electrochemical Energy Storage in Batteries: It is now used locally in some places that are not connected to the electricity network and on the smart grids for frequency regulation or small peak production shifts. Examples include sodium sulfur batteries (NaS) which are used in Japan; redox flow batteries under development, and some large scale lithium–ion batteries (LIBs) that are used in specific places. Storage via Hydrogen: The development of hydrogen as a way of using fuel cells is considered and seems very interesting from the pollution point of view at the local scale. From the technical point of view, most of the problems are almost solved. Nevertheless, hydrogen has to be produced and stored; and in this case, the yield is quite low, similar to that of the internal combustion engine. Electricity storage via hydrogen requires water electrolysis, H2 gas storage, and electricity production in fuel cells, all of which leads to a low efficiency and therefore, significant energy loss during electricity storage.

719 citations

Journal ArticleDOI
TL;DR: This review comprehensively covering the studies on electrochemical materials for KIBs, including electrode and electrolyte materials and a discussion on recent achievements and remaining/emerging issues includes insights into electrode reactions and solid-state ionics and nonaqueous solution chemistry.
Abstract: Li-ion batteries (LIBs), commercialized in 1991, have the highest energy density among practical secondary batteries and are widely utilized in electronics, electric vehicles, and even stationary energy storage systems. Along with the expansion of their demand and application, concern about the resources of Li and Co is growing. Therefore, secondary batteries composed of earth-abundant elements are desired to complement LIBs. In recent years, K-ion batteries (KIBs) have attracted significant attention as potential alternatives to LIBs. Previous studies have developed positive and negative electrode materials for KIBs and demonstrated several unique advantages of KIBs over LIBs and Na-ion batteries (NIBs). Thus, besides being free from any scarce/toxic elements, the low standard electrode potentials of K/K+ electrodes lead to high operation voltages competitive to those observed in LIBs. Moreover, K+ ions exhibit faster ionic diffusion in electrolytes due to weaker interaction with solvents and anions than that of Li+ ions; this is essential to realize high-power KIBs. This review comprehensively covers the studies on electrochemical materials for KIBs, including electrode and electrolyte materials and a discussion on recent achievements and remaining/emerging issues. The review also includes insights into electrode reactions and solid-state ionics and nonaqueous solution chemistry as well as perspectives on the research-based development of KIBs compared to those of LIBs and NIBs.

651 citations

Journal ArticleDOI
TL;DR: In this article, the challenges and recent developments related to rechargeable zinc-ion battery research are presented, as well as recent research trends and directions on electrode materials that can store Zn2+ and electrolytes that can improve the battery performance.
Abstract: The zinc-ion battery (ZIB) is a 2 century-old technology but has recently attracted renewed interest owing to the possibility of switching from primary to rechargeable ZIBs. Nowadays, ZIBs employing a mild aqueous electrolyte are considered one of the most promising candidates for emerging energy storage systems (ESS) and portable electronics applications due to their environmental friendliness, safety, low cost, and acceptable energy density. However, there are many drawbacks associated with these batteries that have not yet been resolved. In this Review, we present the challenges and recent developments related to rechargeable ZIB research. Recent research trends and directions on electrode materials that can store Zn2+ and electrolytes that can improve the battery performance are comprehensively discussed.

612 citations

References
More filters
Journal ArticleDOI
TL;DR: In this paper, the authors designed a full sodium-ion battery based on nanostructured Na2Ti3O7 and VOPO4 materials as the anodes and cathodes, owing to their advantageous electrochemical features.
Abstract: In virtue of the abundant sodium resources, sodium ion batteries (SIBs) have been considered to be one of the promising alternatives to lithium ion batteries (LIBs). However, current research concentrates mostly on sodium ion half-cells, and the development of sodium ion full cells with high performance remains a critical challenge. Here we rationally designed a full sodium-ion battery based on nanostructured Na2Ti3O7 and VOPO4 materials as the anodes and cathodes, owing to their advantageous electrochemical features. The full cell outputs one of the highest operating voltages close to 2.9 V and delivers a large reversible capacity of 114 mA h g−1 at a rate of 0.1C. It also shows outstanding rate capability (∼74 mA h g−1 at 2C rate) and excellent cycling stability (92.4% capacity retention after 100 cycles). A high energy density of 220 W h kg−1 is achieved, which is comparable to the state-of-the-art LIBs. Moreover, the temperature-dependent charge–discharge tests indicate excellent capacity retentions in a wide temperature range of −20 to 55 °C.

214 citations

Journal ArticleDOI
06 Feb 2012-ACS Nano
TL;DR: X-ray diffraction, TEM energy dispersive X-ray spectroscopy, and galvanostatic electrochemical cycling of copper-nickel hexacyanoferrate reveal that copper and nickel form a fully miscible solution at particular sites in the framework without perturbing the structure.
Abstract: The electrical energy grid has a growing need for energy storage to address short-term transients, frequency regulation, and load leveling. Though electrochemical energy storage devices such as batteries offer an attractive solution, current commercial battery technology cannot provide adequate power, and cycle life, and energy efficiency at a sufficiently low cost. Copper hexacyanoferrate and nickel hexacyanoferrate, two open framework materials with the Prussian Blue structure, were recently shown to offer ultralong cycle life and high-rate performance when operated as battery electrodes in safe, inexpensive aqueous sodium ion and potassium ion electrolytes. In this report, we demonstrate that the reaction potential of copper-nickel alloy hexacyanoferrate nanoparticles may be tuned by controlling the ratio of copper to nickel in these materials. X-ray diffraction, TEM energy dispersive X-ray spectroscopy, and galvanostatic electrochemical cycling of copper-nickel hexacyanoferrate reveal that copper and nickel form a fully miscible solution at particular sites in the framework without perturbing the structure. This allows copper-nickel hexacyanoferrate to reversibly intercalate sodium and potassium ions for over 2000 cycles with capacity retentions of 100% and 91%, respectively. The ability to precisely tune the reaction potential of copper-nickel hexacyanoferrate without sacrificing cycle life will allow the development of full cells that utilize the entire electrochemical stability window of aqueous sodium and potassium ion electrolytes.

213 citations

Journal ArticleDOI
TL;DR: In this paper, it was shown that reversible structural changes occur only when the involved structures differ by a small sheet shift, and the charge or discharge potentials (2.0 V ⩽ V⩽ 3.5 V) were measured as a function of x.

213 citations

Journal ArticleDOI
TL;DR: In this article, the authors studied the diffusion of Li and Na ions in TiO2, anatase, using theoretical (quantum chemical ab initio periodic Hartree−Fock and a modified semi-empirical INDO) as well as electrochemical (chronocoloumetry) methods.
Abstract: Diffusion of Li and Na ions in TiO2, anatase, has been studied using theoretical (quantum chemical ab initio periodic Hartree−Fock and a modified semiempirical INDO) as well as electrochemical (chronocoloumetry) methods. On the basis of the theoretical calculations, the geometry of equilibrium and transition states for the impurities as well as the crystalline framework are analyzed and discussed. The calculated activation energies for Li+ and Na+ diffusion were found to be only slightly higher than 0.5 eV by both theoretical methods. The agreement of either theoretical method with the electrochemical experiments, 0.60 and 0.52 eV for Li+ and Na+, respectively, is also remarkably good.

212 citations

Journal ArticleDOI
TL;DR: In this paper, the results of density functional theory (DFT) calculations on the structural and electrochemical properties of Na0.44MnO2, combined with experiments are presented.
Abstract: The Na0.44MnO2 structure is a promising cathode material for sodium ion batteries due to a high capacity (∼130 mAh/g) and good cycle performance. In this work, we present the results of density functional theory (DFT) calculations on the structural and electrochemical properties of Na0.44MnO2, combined with experiments. Seven intermediate phases and the two-phase reactions among them were found, where the calculated voltage profile agreed well with experiments. We found that the S-shaped tunnel is not empty in the deintercalated Na0.22MnO2 structure but has a partial occupancy of sodium ions. The new sodium sites were found in a limited sodium composition range (x = 0.44–0.55) which is attributed to the electrostatic interactions between sodium ions and manganese atoms. The asymmetric lattice evolution in Na0.44MnO2 as a function of sodium insertion/deinsertion is shown to be due to the Jahn–Teller effects. On the basis of this interpretation, we suggest that the Cr substitution will reduce the volume cha...

212 citations