scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Sodium-ion batteries: present and future

19 Jun 2017-Chemical Society Reviews (The Royal Society of Chemistry)-Vol. 46, Iss: 12, pp 3529-3614
TL;DR: Current research on materials is summarized and discussed and future directions for SIBs are proposed to provide important insights into scientific and practical issues in the development of S IBs.
Abstract: Energy production and storage technologies have attracted a great deal of attention for day-to-day applications. In recent decades, advances in lithium-ion battery (LIB) technology have improved living conditions around the globe. LIBs are used in most mobile electronic devices as well as in zero-emission electronic vehicles. However, there are increasing concerns regarding load leveling of renewable energy sources and the smart grid as well as the sustainability of lithium sources due to their limited availability and consequent expected price increase. Therefore, whether LIBs alone can satisfy the rising demand for small- and/or mid-to-large-format energy storage applications remains unclear. To mitigate these issues, recent research has focused on alternative energy storage systems. Sodium-ion batteries (SIBs) are considered as the best candidate power sources because sodium is widely available and exhibits similar chemistry to that of LIBs; therefore, SIBs are promising next-generation alternatives. Recently, sodiated layer transition metal oxides, phosphates and organic compounds have been introduced as cathode materials for SIBs. Simultaneously, recent developments have been facilitated by the use of select carbonaceous materials, transition metal oxides (or sulfides), and intermetallic and organic compounds as anodes for SIBs. Apart from electrode materials, suitable electrolytes, additives, and binders are equally important for the development of practical SIBs. Despite developments in electrode materials and other components, there remain several challenges, including cell design and electrode balancing, in the application of sodium ion cells. In this article, we summarize and discuss current research on materials and propose future directions for SIBs. This will provide important insights into scientific and practical issues in the development of SIBs.

Content maybe subject to copyright    Report

Citations
More filters
Journal ArticleDOI
TL;DR: The current advances, existing limitations, along with the possible solutions in the pursuit of cathode materials with high voltage, fast kinetics, and long cycling stability are comprehensively covered and evaluated to guide the future design of aqueous ZIBs with a combination of high gravimetric energy density, good reversibility, and a long cycle life.
Abstract: Aqueous zinc ion batteries (ZIBs) are truly promising contenders for the future large-scale electrical energy storage applications due to their cost-effectiveness, environmental friendliness, intri...

726 citations

Journal ArticleDOI
TL;DR: In this article, the authors considered the use of hydrogen as a way of using fuel cells and showed that hydrogen can play a significant role for intermediate time storage of a few hours to several days, and even for intermediate scale capacity energy storage.
Abstract: Pumped-Storage of Water: It is the most efficient; it is developed in very large scale capacity storage facilities which require specific sites; nevertheless, in the future due to its long lifetime it will play a significant role for intermediate time storage of a few hours to several days, and even for intermediate scale capacity energy storage. Electrochemical Energy Storage in Batteries: It is now used locally in some places that are not connected to the electricity network and on the smart grids for frequency regulation or small peak production shifts. Examples include sodium sulfur batteries (NaS) which are used in Japan; redox flow batteries under development, and some large scale lithium–ion batteries (LIBs) that are used in specific places. Storage via Hydrogen: The development of hydrogen as a way of using fuel cells is considered and seems very interesting from the pollution point of view at the local scale. From the technical point of view, most of the problems are almost solved. Nevertheless, hydrogen has to be produced and stored; and in this case, the yield is quite low, similar to that of the internal combustion engine. Electricity storage via hydrogen requires water electrolysis, H2 gas storage, and electricity production in fuel cells, all of which leads to a low efficiency and therefore, significant energy loss during electricity storage.

719 citations

Journal ArticleDOI
TL;DR: This review comprehensively covering the studies on electrochemical materials for KIBs, including electrode and electrolyte materials and a discussion on recent achievements and remaining/emerging issues includes insights into electrode reactions and solid-state ionics and nonaqueous solution chemistry.
Abstract: Li-ion batteries (LIBs), commercialized in 1991, have the highest energy density among practical secondary batteries and are widely utilized in electronics, electric vehicles, and even stationary energy storage systems. Along with the expansion of their demand and application, concern about the resources of Li and Co is growing. Therefore, secondary batteries composed of earth-abundant elements are desired to complement LIBs. In recent years, K-ion batteries (KIBs) have attracted significant attention as potential alternatives to LIBs. Previous studies have developed positive and negative electrode materials for KIBs and demonstrated several unique advantages of KIBs over LIBs and Na-ion batteries (NIBs). Thus, besides being free from any scarce/toxic elements, the low standard electrode potentials of K/K+ electrodes lead to high operation voltages competitive to those observed in LIBs. Moreover, K+ ions exhibit faster ionic diffusion in electrolytes due to weaker interaction with solvents and anions than that of Li+ ions; this is essential to realize high-power KIBs. This review comprehensively covers the studies on electrochemical materials for KIBs, including electrode and electrolyte materials and a discussion on recent achievements and remaining/emerging issues. The review also includes insights into electrode reactions and solid-state ionics and nonaqueous solution chemistry as well as perspectives on the research-based development of KIBs compared to those of LIBs and NIBs.

651 citations

Journal ArticleDOI
TL;DR: In this article, the challenges and recent developments related to rechargeable zinc-ion battery research are presented, as well as recent research trends and directions on electrode materials that can store Zn2+ and electrolytes that can improve the battery performance.
Abstract: The zinc-ion battery (ZIB) is a 2 century-old technology but has recently attracted renewed interest owing to the possibility of switching from primary to rechargeable ZIBs. Nowadays, ZIBs employing a mild aqueous electrolyte are considered one of the most promising candidates for emerging energy storage systems (ESS) and portable electronics applications due to their environmental friendliness, safety, low cost, and acceptable energy density. However, there are many drawbacks associated with these batteries that have not yet been resolved. In this Review, we present the challenges and recent developments related to rechargeable ZIB research. Recent research trends and directions on electrode materials that can store Zn2+ and electrolytes that can improve the battery performance are comprehensively discussed.

612 citations

References
More filters
Journal ArticleDOI
TL;DR: In this paper, a hard carbon negative electrode with CMC binder demonstrates the superior reversibility and cycleability in NaPF6 propylene carbonate solution at room temperature to that with ordinary poly(vinylidene difluoride) (PVdF) binder.

173 citations

Journal ArticleDOI
TL;DR: In this paper, it was demonstrated that the interlayer spacing of the (001) plane in the TiO2(B) nanotubes is large enough to accommodate sodium ions and the tubular morphology can ensure the good high rate capability and cycle stability.
Abstract: Exploring new anode materials is important for developing sodium ion batteries. In this work, TiO2(B) nanotubes are prepared by hydrothermal reaction in concentrated NaOH solution and subsequent calcination at 300 °C in air, and investigated for the first time as anodes for sodium ion batteries. It is demonstrated that TiO2(B) nanotubes are several hundred nanometers in length with an outer diameter of about 10–15 nm. Moreover, the interference fringe spacings of the nanotubes are derived from the TEM image, being about 0.56 and 0.34 nm, which are consistent with the interplanar distances of the (001) and (110) planes in the TiO2(B) phase, respectively. As anticipated, the interlayer spacing of the (001) plane in the TiO2(B) nanotubes is large enough to accommodate sodium ions. Meanwhile, the tubular morphology can ensure the good high rate capability and cycle stability. Therefore, TiO2(B) nanotubes present feasible electrochemical sodium storage, offering possibilities to develop new anode materials for sodium ion batteries.

172 citations

Journal ArticleDOI
TL;DR: The use of orthorhombic Na[sub x]MnO[sub 2] as a cathode material for alkali metal polymer electrolyte batteries is described for the first time in this paper.
Abstract: The use of orthorhombic Na[sub x]MnO[sub 2] as a cathode material for alkali metal polymer electrolyte batteries is described for the first time. This sodium manganese bronze has a tunnel structure and can reversibly intercalate up to 0.55 to 0.6 alkali metal ions (Li[sup +] or Na[sup +]) per manganese at moderate current densities, corresponding to capacities of 160 to 180 mAh/g. Li/PEO/Na[sub 0.2]Li[sub x]MnO[sub 2] cells [PEO = poly(ethylene oxide)] to date have been cycled over ninety times at 0.1 mA/cm[sup 2], with excellent capacity retention. Na/PEO/Na[sub x]MnO[sub 2] and Na[sub x]MnO[sub 2]/PEO/Na[sub x]MnO[sub 2] cells have been cycled over sixty times to date at the same rate, showing moderate capacity fading.

172 citations

Journal ArticleDOI
TL;DR: The Sn0.9Cu0.1 nanoparticle-based electrodes exhibited a stable capacity of greater than 420 mA h g(-1) at 0.2 C rate, retaining 97% of their maximum observed capacity after 100 cycles of sodium insertion/deinsertion.
Abstract: Sn0.9Cu0.1 nanoparticles were synthesized via a surfactant-assisted wet chemistry method, which were then investigated as an anode material for ambient temperature rechargeable sodium ion batteries. The Sn0.9Cu0.1 nanoparticle-based electrodes exhibited a stable capacity of greater than 420 mA h g–1 at 0.2 C rate, retaining 97% of their maximum observed capacity after 100 cycles of sodium insertion/deinsertion. Their performance is considerably superior to electrodes made with either Sn nanoparticles or Sn microparticles.

171 citations

Journal ArticleDOI
TL;DR: In this paper, both nanocolumnar and dense germanium thin films, synthesized by evaporative deposition, were tested as a potential anode material for sodium-ion batteries.
Abstract: Both nanocolumnar and dense germanium thin films, synthesized by evaporative deposition, were tested as a potential anode material for sodium-ion batteries. The reversible capacity of the nanocolumnar films was found to be 430 mAh/g, which is higher than the theoretical capacity of 369 mAh/g. The nanocolumnar films retained 88% of their initial capacity after 100 cycles at C/5, whereas the dense films began to deteriorate after ∼15 cycles. Additionally, the nanocolumnar films were stable at charge/discharge rates up to 27C (10 A/g). The diffusion coefficient for sodium in germanium was estimated, from impedance analysis of the dense films, to be ∼10–13 cm2 s–1. Modeling of diffusion in the sodium- germanium system predicts that sodium diffusion in the near-surface layers of the material is significantly faster than in the bulk. These results show that small feature sizes are critical for rapid, reversible electrochemical sodiation of germanium.

170 citations