scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Sodium-ion batteries: present and future

19 Jun 2017-Chemical Society Reviews (The Royal Society of Chemistry)-Vol. 46, Iss: 12, pp 3529-3614
TL;DR: Current research on materials is summarized and discussed and future directions for SIBs are proposed to provide important insights into scientific and practical issues in the development of S IBs.
Abstract: Energy production and storage technologies have attracted a great deal of attention for day-to-day applications. In recent decades, advances in lithium-ion battery (LIB) technology have improved living conditions around the globe. LIBs are used in most mobile electronic devices as well as in zero-emission electronic vehicles. However, there are increasing concerns regarding load leveling of renewable energy sources and the smart grid as well as the sustainability of lithium sources due to their limited availability and consequent expected price increase. Therefore, whether LIBs alone can satisfy the rising demand for small- and/or mid-to-large-format energy storage applications remains unclear. To mitigate these issues, recent research has focused on alternative energy storage systems. Sodium-ion batteries (SIBs) are considered as the best candidate power sources because sodium is widely available and exhibits similar chemistry to that of LIBs; therefore, SIBs are promising next-generation alternatives. Recently, sodiated layer transition metal oxides, phosphates and organic compounds have been introduced as cathode materials for SIBs. Simultaneously, recent developments have been facilitated by the use of select carbonaceous materials, transition metal oxides (or sulfides), and intermetallic and organic compounds as anodes for SIBs. Apart from electrode materials, suitable electrolytes, additives, and binders are equally important for the development of practical SIBs. Despite developments in electrode materials and other components, there remain several challenges, including cell design and electrode balancing, in the application of sodium ion cells. In this article, we summarize and discuss current research on materials and propose future directions for SIBs. This will provide important insights into scientific and practical issues in the development of SIBs.

Content maybe subject to copyright    Report

Citations
More filters
Journal ArticleDOI
TL;DR: The current advances, existing limitations, along with the possible solutions in the pursuit of cathode materials with high voltage, fast kinetics, and long cycling stability are comprehensively covered and evaluated to guide the future design of aqueous ZIBs with a combination of high gravimetric energy density, good reversibility, and a long cycle life.
Abstract: Aqueous zinc ion batteries (ZIBs) are truly promising contenders for the future large-scale electrical energy storage applications due to their cost-effectiveness, environmental friendliness, intri...

726 citations

Journal ArticleDOI
TL;DR: In this article, the authors considered the use of hydrogen as a way of using fuel cells and showed that hydrogen can play a significant role for intermediate time storage of a few hours to several days, and even for intermediate scale capacity energy storage.
Abstract: Pumped-Storage of Water: It is the most efficient; it is developed in very large scale capacity storage facilities which require specific sites; nevertheless, in the future due to its long lifetime it will play a significant role for intermediate time storage of a few hours to several days, and even for intermediate scale capacity energy storage. Electrochemical Energy Storage in Batteries: It is now used locally in some places that are not connected to the electricity network and on the smart grids for frequency regulation or small peak production shifts. Examples include sodium sulfur batteries (NaS) which are used in Japan; redox flow batteries under development, and some large scale lithium–ion batteries (LIBs) that are used in specific places. Storage via Hydrogen: The development of hydrogen as a way of using fuel cells is considered and seems very interesting from the pollution point of view at the local scale. From the technical point of view, most of the problems are almost solved. Nevertheless, hydrogen has to be produced and stored; and in this case, the yield is quite low, similar to that of the internal combustion engine. Electricity storage via hydrogen requires water electrolysis, H2 gas storage, and electricity production in fuel cells, all of which leads to a low efficiency and therefore, significant energy loss during electricity storage.

719 citations

Journal ArticleDOI
TL;DR: This review comprehensively covering the studies on electrochemical materials for KIBs, including electrode and electrolyte materials and a discussion on recent achievements and remaining/emerging issues includes insights into electrode reactions and solid-state ionics and nonaqueous solution chemistry.
Abstract: Li-ion batteries (LIBs), commercialized in 1991, have the highest energy density among practical secondary batteries and are widely utilized in electronics, electric vehicles, and even stationary energy storage systems. Along with the expansion of their demand and application, concern about the resources of Li and Co is growing. Therefore, secondary batteries composed of earth-abundant elements are desired to complement LIBs. In recent years, K-ion batteries (KIBs) have attracted significant attention as potential alternatives to LIBs. Previous studies have developed positive and negative electrode materials for KIBs and demonstrated several unique advantages of KIBs over LIBs and Na-ion batteries (NIBs). Thus, besides being free from any scarce/toxic elements, the low standard electrode potentials of K/K+ electrodes lead to high operation voltages competitive to those observed in LIBs. Moreover, K+ ions exhibit faster ionic diffusion in electrolytes due to weaker interaction with solvents and anions than that of Li+ ions; this is essential to realize high-power KIBs. This review comprehensively covers the studies on electrochemical materials for KIBs, including electrode and electrolyte materials and a discussion on recent achievements and remaining/emerging issues. The review also includes insights into electrode reactions and solid-state ionics and nonaqueous solution chemistry as well as perspectives on the research-based development of KIBs compared to those of LIBs and NIBs.

651 citations

Journal ArticleDOI
TL;DR: In this article, the challenges and recent developments related to rechargeable zinc-ion battery research are presented, as well as recent research trends and directions on electrode materials that can store Zn2+ and electrolytes that can improve the battery performance.
Abstract: The zinc-ion battery (ZIB) is a 2 century-old technology but has recently attracted renewed interest owing to the possibility of switching from primary to rechargeable ZIBs. Nowadays, ZIBs employing a mild aqueous electrolyte are considered one of the most promising candidates for emerging energy storage systems (ESS) and portable electronics applications due to their environmental friendliness, safety, low cost, and acceptable energy density. However, there are many drawbacks associated with these batteries that have not yet been resolved. In this Review, we present the challenges and recent developments related to rechargeable ZIB research. Recent research trends and directions on electrode materials that can store Zn2+ and electrolytes that can improve the battery performance are comprehensively discussed.

612 citations

References
More filters
Journal ArticleDOI
TL;DR: An integrated preparation of a low-cost composite gel-polymer/glass-fiber electrolyte with poly(vinylidene fluoride-co-hexafluoropropylene) (PVDF-HFP) reinforced by a glass fiber paper and modified by a polydopamine coating is shown to be applicable to a sodium-ion battery as mentioned in this paper.
Abstract: An integrated preparation of a low-cost composite gel–polymer/glass–fiber electrolyte with poly(vinylidene fluoride-co-hexafluoropropylene) (PVDF-HFP) reinforced by a glass–fiber paper and modified by a polydopamine coating to tune the mechanical and surface properties of PVDF-HFP is shown to be applicable to a sodium-ion battery. The composite polymer matrix exhibits excellent mechanical strength and thermal stability up to 200 °C. After saturating with a liquid electrolyte, a wide electrochemical window and high ionic conductivity is obtained for the composite gel–polymer/glass–fiber electrolyte. When tested in a sodium-ion battery with Na2MnFe(CN)6 as cathode, the rate capability, cycling performance, and coulombic efficiency are significantly improved. The results suggest that the composite polymer electrolyte is a very attractive separator for a large-scale battery system where safety and cost are the main concerns.

135 citations

Journal ArticleDOI
TL;DR: Using impedance spectroscopy in three electrodes cells, it is shown that the full cell impedance is dominated by the contribution of the cathode side, and possible reasons for capacity fading of Na-ion and Li-ion systems are discussed.
Abstract: The electrochemical behavior of Na-ion and Li-ion full cells was investigated, using hard carbon as the anode material, and NaNi0.5Mn0.5O2 and LiNi0.5Mn0.5O2 as the cathodes. A detailed description of the structure, phase transition, electrochemical behavior and kinetics of the NaNi0.5Mn0.5O2 cathodes is presented, including interesting comparison with their lithium analogue. The critical effect of the hard carbon anodes pretreatment in the total capacity and stability of full cells is clearly demonstrated. Using impedance spectroscopy in three electrodes cells, we show that the full cell impedance is dominated by the contribution of the cathode side. We discuss possible reasons for capacity fading of these systems, its connection to the cathode structure and relevant surface phenomena.

134 citations

Journal ArticleDOI
TL;DR: N nanostructured Co3O4 presents feasible electrochemical sodium storage, offering possibilities to develop new anode materials for sodium-ion batteries.

134 citations

Journal ArticleDOI
TL;DR: In this article, the structure of Na4Co3(PO4)2(P2O7) has been determined by X-ray diffraction techniques using as the starting model the structure structure of the isostructural compound Na4M3(PPO4), and the ionic conductivity due to Na+ ions is measured for the three compounds.
Abstract: The new phases, Na4M3(PO4)2(P2O7) (M = Mn, Co, Ni), have been synthesized by solid-state reactions. Single crystals of Na4M3(PO4)2(P2O7) (M = Mn, Ni) have been isolated and their structure has been determined by X-ray diffraction techniques using as the starting model the structure of the isostructural compound Na4Co3(PO4)2(P2O7). These compounds crystallize in the orthorhombic noncentrosymmetric space group Pn21a with a = 17.991(3) A, b = 6.6483(1), and c = 10.765(2) A for the manganese compound and a = 17.999(2), b = 6.4986(6) A, and c = 10.4200(9) A for the nickel compound, with Z = 4. Magnetic measurements reveal the existence of antiferromagnetic interactions in the nickel compound. The manganese and cobalt compounds show canting antiferromagnetic behavior at low temperatures. Magnetic correlation is also studied from the analysis of possible superexchange pathways in the structure. The ionic conductivity, due to Na+ ions, is measured for the three compounds. The activation energy is nearly the same ...

133 citations

Journal ArticleDOI
TL;DR: In this article, a tin sulfide-carbon (SnS-C) nanocomposite is prepared by a simple high-energy mechanical milling method, which is composed of well crystallized SnS nanoparticles with a size of about 15 nm, which are dispersed uniformly in the conductive carbon matrix.
Abstract: A tin(II) sulfide–carbon (SnS–C) nanocomposite is prepared by a simple high-energy mechanical milling method. XRD, SEM and TEM characterizations show that the nanocomposite is composed of well crystallized SnS nanoparticles with a size of about 15 nm, which are dispersed uniformly in the conductive carbon matrix. The SnS–C electrode exhibits a high Na storage capacity (568 mA h g−1 at 20 mA g−1) and excellent cycling stability (97.8% capacity retention over 80 cycles) as well as high-rate capability. Ex situ XRD result confirms a sequential conversion and alloying–dealloying reaction mechanism of the SnS–C electrode during the Na uptaking and extraction cycles. The superior electrochemical performance of the electrodes can be attributed to the small crystalline size of SnS and good carbon coating, which facilitate electrochemical utilization and maintain the structural integrity.

133 citations