scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Soft sets and soft groups

01 Jul 2007-Information Sciences (Elsevier Science Inc.)-Vol. 177, Iss: 13, pp 2726-2735
TL;DR: The basic properties of soft sets are introduced, and compare soft sets to the related concepts of fuzzy sets and rough sets, and a definition of soft groups is given.
Abstract: Molodtsov introduced the concept of soft set theory, which can be used as a generic mathematical tool for dealing with uncertainty. In this paper we introduce the basic properties of soft sets, and compare soft sets to the related concepts of fuzzy sets and rough sets. We then give a definition of soft groups, and derive their basic properties using Molodtsov's definition of the soft sets.
Citations
More filters
Journal ArticleDOI
TL;DR: This paper points out that several assertions in a previous paper by Maji et al. are not true in general, and gives some new notions such as the restricted intersection, the restricted union, therestricted difference and the extended intersection of two soft sets.
Abstract: Molodtsov introduced the theory of soft sets, which can be seen as a new mathematical approach to vagueness. In this paper, we first point out that several assertions (Proposition 2.3 (iv)-(vi), Proposition 2.4 and Proposition 2.6 (iii), (iv)) in a previous paper by Maji et al. [P.K. Maji, R. Biswas, A.R. Roy, Soft set theory, Comput. Math. Appl. 45 (2003) 555-562] are not true in general, by counterexamples. Furthermore, based on the analysis of several operations on soft sets introduced in the same paper, we give some new notions such as the restricted intersection, the restricted union, the restricted difference and the extended intersection of two soft sets. Moreover, we improve the notion of complement of a soft set, and prove that certain De Morgan's laws hold in soft set theory with respect to these new definitions.

1,223 citations


Additional excerpts

  • ...Similar exampleswere also discussed in [2,3]....

    [...]

Journal ArticleDOI
TL;DR: It is shown that a soft topological space gives a parametrized family of topological spaces and it is established that the converse does not hold.
Abstract: In the present paper we introduce soft topological spaces which are defined over an initial universe with a fixed set of parameters. The notions of soft open sets, soft closed sets, soft closure, soft interior points, soft neighborhood of a point and soft separation axioms are introduced and their basic properties are investigated. It is shown that a soft topological space gives a parametrized family of topological spaces. Furthermore, with the help of an example it is established that the converse does not hold. The soft subspaces of a soft topological space are defined and inherent concepts as well as the characterization of soft open and soft closed sets in soft subspaces are investigated. Finally, soft T"i-spaces and notions of soft normal and soft regular spaces are discussed in detail. A sufficient condition for a soft topological space to be a soft T"1-space is also presented.

832 citations

Journal ArticleDOI
TL;DR: An uni-int decision making method which selects a set of optimum elements from the alternatives is constructed which shows that the method can be successfully applied to many problems that contain uncertainties.
Abstract: We firstly redefine the operations of Molodtsov’s soft sets to make them more functional for improving several new results. We also define products of soft sets and uni–int decision function. By using these new definitions we then construct an uni–int decision making method which selects a set of optimum elements from the alternatives. We finally present an example which shows that the method can be successfully applied to many problems that contain uncertainties.

622 citations

Journal ArticleDOI
01 Jul 2010
TL;DR: A possible fusion of fuzzy sets and rough sets is proposed to obtain a hybrid model called rough soft sets, based on a Pawlak approximation space, and a concept called soft–rough fuzzy sets is initiated, which extends Dubois and Prade's rough fuzzy sets.
Abstract: Theories of fuzzy sets and rough sets are powerful mathematical tools for modelling various types of uncertainty. Dubois and Prade investigated the problem of combining fuzzy sets with rough sets. Soft set theory was proposed by Molodtsov as a general framework for reasoning about vague concepts. The present paper is devoted to a possible fusion of these distinct but closely related soft computing approaches. Based on a Pawlak approximation space, the approximation of a soft set is proposed to obtain a hybrid model called rough soft sets. Alternatively, a soft set instead of an equivalence relation can be used to granulate the universe. This leads to a deviation of Pawlak approximation space called a soft approximation space, in which soft rough approximations and soft rough sets can be introduced accordingly. Furthermore, we also consider approximation of a fuzzy set in a soft approximation space, and initiate a concept called soft---rough fuzzy sets, which extends Dubois and Prade's rough fuzzy sets. Further research will be needed to establish whether the notions put forth in this paper may lead to a fruitful theory.

607 citations


Cites background from "Soft sets and soft groups"

  • ...The following is one type of illuminating examples considered by many authors (Aktaş and Çağman 2007; Chen et al. 2005; Maji et al. 2002, 2003)....

    [...]

  • ...As is shown in Aktaş and Çağman (2007), both fuzzy sets...

    [...]

  • ...Linguistic terms therefore cannot be expressed by ordinary set theory; rather, each linguistic term is associated with a fuzzy set (Aktaş and Çağman 2007)....

    [...]

  • ...Aktaş and Çağman (2007) related soft sets to fuzzy sets and rough sets, providing examples to clarify their differences....

    [...]

  • ...Linguistic terms therefore cannot be expressed by ordinary set theory; rather, each linguistic term is associated with a fuzzy set (Aktaş and Çağman 2007). The rough set theory proposed by Pawlak (1982) provides a systematic method for dealing with vague concepts caused by indiscernibility in situation with incomplete information or a lack of knowledge....

    [...]

Journal ArticleDOI
TL;DR: This paper initiates the study of soft semirings by using the soft set theory, and the notions of soft Semirings, soft subsemirings,soft ideals, idealistic softSemirings and soft semiring homomorphisms are introduced, and several related properties are investigated.
Abstract: Molodtsov introduced the concept of soft sets, which can be seen as a new mathematical tool for dealing with uncertainty. In this paper, we initiate the study of soft semirings by using the soft set theory. The notions of soft semirings, soft subsemirings, soft ideals, idealistic soft semirings and soft semiring homomorphisms are introduced, and several related properties are investigated.

579 citations


Cites background from "Soft sets and soft groups"

  • ...Aktaş and Çaǧman [11] compared soft sets to the related concepts of fuzzy sets and rough sets....

    [...]

  • ...Aktaş and Çaǧman [11] compared soft sets to the related concepts of fuzzy sets and rough sets....

    [...]

  • ...These examples were also discussed in [11,10]....

    [...]

References
More filters
Book
01 Aug 1996
TL;DR: A separation theorem for convex fuzzy sets is proved without requiring that the fuzzy sets be disjoint.
Abstract: A fuzzy set is a class of objects with a continuum of grades of membership. Such a set is characterized by a membership (characteristic) function which assigns to each object a grade of membership ranging between zero and one. The notions of inclusion, union, intersection, complement, relation, convexity, etc., are extended to such sets, and various properties of these notions in the context of fuzzy sets are established. In particular, a separation theorem for convex fuzzy sets is proved without requiring that the fuzzy sets be disjoint.

52,705 citations

Book
31 Jul 1985
TL;DR: The book updates the research agenda with chapters on possibility theory, fuzzy logic and approximate reasoning, expert systems, fuzzy control, fuzzy data analysis, decision making and fuzzy set models in operations research.
Abstract: Fuzzy Set Theory - And Its Applications, Third Edition is a textbook for courses in fuzzy set theory. It can also be used as an introduction to the subject. The character of a textbook is balanced with the dynamic nature of the research in the field by including many useful references to develop a deeper understanding among interested readers. The book updates the research agenda (which has witnessed profound and startling advances since its inception some 30 years ago) with chapters on possibility theory, fuzzy logic and approximate reasoning, expert systems, fuzzy control, fuzzy data analysis, decision making and fuzzy set models in operations research. All chapters have been updated. Exercises are included.

7,877 citations

Book
31 Oct 1991
TL;DR: Theoretical Foundations.
Abstract: I. Theoretical Foundations.- 1. Knowledge.- 1.1. Introduction.- 1.2. Knowledge and Classification.- 1.3. Knowledge Base.- 1.4. Equivalence, Generalization and Specialization of Knowledge.- Summary.- Exercises.- References.- 2. Imprecise Categories, Approximations and Rough Sets.- 2.1. Introduction.- 2.2. Rough Sets.- 2.3. Approximations of Set.- 2.4. Properties of Approximations.- 2.5. Approximations and Membership Relation.- 2.6. Numerical Characterization of Imprecision.- 2.7. Topological Characterization of Imprecision.- 2.8. Approximation of Classifications.- 2.9. Rough Equality of Sets.- 2.10. Rough Inclusion of Sets.- Summary.- Exercises.- References.- 3. Reduction of Knowledge.- 3.1. Introduction.- 3.2. Reduct and Core of Knowledge.- 3.3. Relative Reduct and Relative Core of Knowledge.- 3.4. Reduction of Categories.- 3.5. Relative Reduct and Core of Categories.- Summary.- Exercises.- References.- 4. Dependencies in Knowledge Base.- 4.1. Introduction.- 4.2. Dependency of Knowledge.- 4.3. Partial Dependency of Knowledge.- Summary.- Exercises.- References.- 5. Knowledge Representation.- 5.1. Introduction.- 5.2. Examples.- 5.3. Formal Definition.- 5.4. Significance of Attributes.- 5.5. Discernibility Matrix.- Summary.- Exercises.- References.- 6. Decision Tables.- 6.1. Introduction.- 6.2. Formal Definition and Some Properties.- 6.3. Simplification of Decision Tables.- Summary.- Exercises.- References.- 7. Reasoning about Knowledge.- 7.1. Introduction.- 7.2. Language of Decision Logic.- 7.3. Semantics of Decision Logic Language.- 7.4. Deduction in Decision Logic.- 7.5. Normal Forms.- 7.6. Decision Rules and Decision Algorithms.- 7.7. Truth and Indiscernibility.- 7.8. Dependency of Attributes.- 7.9. Reduction of Consistent Algorithms.- 7.10. Reduction of Inconsistent Algorithms.- 7.11. Reduction of Decision Rules.- 7.12. Minimization of Decision Algorithms.- Summary.- Exercises.- References.- II. Applications.- 8. Decision Making.- 8.1. Introduction.- 8.2. Optician's Decisions Table.- 8.3. Simplification of Decision Table.- 8.4. Decision Algorithm.- 8.5. The Case of Incomplete Information.- Summary.- Exercises.- References.- 9. Data Analysis.- 9.1. Introduction.- 9.2. Decision Table as Protocol of Observations.- 9.3. Derivation of Control Algorithms from Observation.- 9.4. Another Approach.- 9.5. The Case of Inconsistent Data.- Summary.- Exercises.- References.- 10. Dissimilarity Analysis.- 10.1. Introduction.- 10.2. The Middle East Situation.- 10.3. Beauty Contest.- 10.4. Pattern Recognition.- 10.5. Buying a Car.- Summary.- Exercises.- References.- 11. Switching Circuits.- 11.1. Introduction.- 11.2. Minimization of Partially Defined Switching Functions.- 11.3. Multiple-Output Switching Functions.- Summary.- Exercises.- References.- 12. Machine Learning.- 12.1. Introduction.- 12.2. Learning From Examples.- 12.3. The Case of an Imperfect Teacher.- 12.4. Inductive Learning.- Summary.- Exercises.- References.

7,826 citations

Book
01 Jan 2011
TL;DR: This book effectively constitutes a detailed annotated bibliography in quasitextbook style of the some thousand contributions deemed by Messrs. Dubois and Prade to belong to the area of fuzzy set theory and its applications or interactions in a wide spectrum of scientific disciplines.
Abstract: (1982). Fuzzy Sets and Systems — Theory and Applications. Journal of the Operational Research Society: Vol. 33, No. 2, pp. 198-198.

5,861 citations

Journal ArticleDOI
TL;DR: In this paper, a new book about fuzzy set theory and its applications is presented, which can be used to explore the knowledge of the knowledge in a new way, even for only few minutes to read a book.
Abstract: Spend your time even for only few minutes to read a book. Reading a book will never reduce and waste your time to be useless. Reading, for some people become a need that is to do every day such as spending time for eating. Now, what about you? Do you like to read a book? Now, we will show you a new book enPDFd fuzzy set theory and its applications that can be a new way to explore the knowledge. When reading this book, you can get one thing to always remember in every reading time, even step by step.

4,041 citations