scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Soft X-ray microscopy at a spatial resolution better than 15 nm

30 Jun 2005-Nature (Nature Publishing Group)-Vol. 435, Iss: 7046, pp 1210-1213
TL;DR: The achievement of sub-15-nm spatial resolution with a soft X-ray microscope—and a clear path to below 10 nm—using an overlay technique for zone plate fabrication is reported.
Abstract: The study of nanostructures is creating a need for microscopes that can see beyond the limits of conventional visible light and ultraviolet microscopes. X-ray imaging is a promising option. A new microscope described this week achieves unprecedented resolution, and has the ability to see through containing material. It features a specially made two-component zone plate — a lens with concentric zones rather like the rings in the Fresnel lenses familiar in overhead projectors and elsewhere — that makes use of diffraction to project an image into a CCD camera sensitive to soft X-rays. Spatial resolution of better than 15 nm is possible. Analytical tools that have spatial resolution at the nanometre scale are indispensable for the life and physical sciences. It is desirable that these tools also permit elemental and chemical identification on a scale of 10 nm or less, with large penetration depths. A variety of techniques1,2,3,4,5,6,7 in X-ray imaging are currently being developed that may provide these combined capabilities. Here we report the achievement of sub-15-nm spatial resolution with a soft X-ray microscope—and a clear path to below 10 nm—using an overlay technique for zone plate fabrication. The microscope covers a spectral range from a photon energy of 250 eV (∼5 nm wavelength) to 1.8 keV (∼0.7 nm), so that primary K and L atomic resonances of elements such as C, N, O, Al, Ti, Fe, Co and Ni can be probed. This X-ray microscopy technique is therefore suitable for a wide range of studies: biological imaging in the water window8,9; studies of wet environmental samples10,11; studies of magnetic nanostructures with both elemental and spin-orbit sensitivity12,13,14; studies that require viewing through thin windows, coatings or substrates (such as buried electronic devices in a silicon chip15); and three-dimensional imaging of cryogenically fixed biological cells9,16.
Citations
More filters
Journal ArticleDOI
TL;DR: In this paper, a quantum-mechanical description of the interaction between the electrons and the sample is discussed, followed by a powerful classical dielectric approach that can be in practice applied to more complex systems.
Abstract: This review discusses how low-energy, valence excitations created by swift electrons can render information on the optical response of structured materials with unmatched spatial resolution. Electron microscopes are capable of focusing electron beams on sub-nanometer spots and probing the target response either by analyzing electron energy losses or by detecting emitted radiation. Theoretical frameworks suited to calculate the probability of energy loss and light emission (cathodoluminescence) are revisited and compared with experimental results. More precisely, a quantum-mechanical description of the interaction between the electrons and the sample is discussed, followed by a powerful classical dielectric approach that can be in practice applied to more complex systems. We assess the conditions under which classical and quantum-mechanical formulations are equivalent. The excitation of collective modes such as plasmons is studied in bulk materials, planar surfaces, and nanoparticles. Light emission induced by the electrons is shown to constitute an excellent probe of plasmons, combining sub-nanometer resolution in the position of the electron beam with nanometer resolution in the emitted wavelength. Both electron energy-loss and cathodoluminescence spectroscopies performed in a scanning mode of operation yield snap shots of plasmon modes in nanostructures with fine spatial detail as compared to other existing imaging techniques, thus providing an ideal tool for nanophotonics studies.

1,288 citations


Cites background from "Soft X-ray microscopy at a spatial ..."

  • ...Nonetheless, recent advances in x-ray microscopy (XRM) have allowed 15 nm imaging resolution (Chao et al., 2005) at energies above 250 eV....

    [...]

Journal ArticleDOI
TL;DR: A review of the principle, the advantages and limitations of X-ray CT itself are presented, together with an overview of some current applications of micro-CT in geosciences.

1,134 citations

Journal ArticleDOI
TL;DR: In this paper, the authors review the current state of the art as CT transforms from a qualitative diagnostic tool to a quantitative one, including the use of iterative reconstruction strategies suited to specific segmentation tasks and emerging methods that provide more insight than conventional attenuation based tomography.
Abstract: X-ray computer tomography (CT) is fast becoming an accepted tool within the materials science community for the acquisition of 3D images. Here the authors review the current state of the art as CT transforms from a qualitative diagnostic tool to a quantitative one. Our review considers first the image acquisition process, including the use of iterative reconstruction strategies suited to specific segmentation tasks and emerging methods that provide more insight (e.g. fast and high resolution imaging, crystallite (grain) imaging) than conventional attenuation based tomography. Methods and shortcomings of CT are examined for the quantification of 3D volumetric data to extract key topological parameters such as phase fractions, phase contiguity, and damage levels as well as density variations. As a non-destructive technique, CT is an ideal means of following structural development over time via time lapse sequences of 3D images (sometimes called 3D movies or 4D imaging). This includes information nee...

1,009 citations

Journal ArticleDOI
TL;DR: Assessment of the potential role that electron microscopy of liquid samples can play in areas such as energy storage and bioimaging is assessed.
Abstract: This article reviews the use of electron microscopy in liquids and its application in biology and materials science.

821 citations


Cites background from "Soft X-ray microscopy at a spatial ..."

  • ...X-ray microscopy has a resolution in the tens of nanometres rang...

    [...]

Journal ArticleDOI
TL;DR: An overview of the techniques of electron tomography and electron holography is presented and their capabilities with the aid of case studies that span materials science and the interface between the physical sciences and the life sciences are demonstrated.
Abstract: The rapid development of electron tomography, in particular the introduction of novel tomographic imaging modes, has led to the visualization and analysis of three-dimensional structural and chemical information from materials at the nanometre level. In addition, the phase information revealed in electron holograms allows electrostatic and magnetic potentials to be mapped quantitatively with high spatial resolution and, when combined with tomography, in three dimensions. Here we present an overview of the techniques of electron tomography and electron holography and demonstrate their capabilities with the aid of case studies that span materials science and the interface between the physical sciences and the life sciences.

795 citations


Cites methods from "Soft X-ray microscopy at a spatial ..."

  • ...By using a synchrotron source, X-ray tomograms can be produced with sub-100-nm resolution, and a 2D spatial resolution of ∼15 nm is possible using zone plate...

    [...]

References
More filters
01 Oct 1999
TL;DR: In this article, the authors discuss various topics about optics, such as geometrical theories, image forming instruments, and optics of metals and crystals, including interference, interferometers, and diffraction.
Abstract: The book is comprised of 15 chapters that discuss various topics about optics, such as geometrical theories, image forming instruments, and optics of metals and crystals. The text covers the elements of the theories of interference, interferometers, and diffraction. The book tackles several behaviors of light, including its diffraction when exposed to ultrasonic waves.

19,503 citations

Book
01 Jan 1985

2,817 citations

Journal ArticleDOI
22 Jul 1999-Nature
TL;DR: Extending the methodology of X-ray crystallography to allow imaging of micrometre-sized non-crystalline specimens was proposed in this paper, where the authors extended the methodology to allow the imaging of micro-scale specimens.
Abstract: Extending the methodology of X-ray crystallography to allow imaging of micrometre-sized non-crystalline specimens

1,791 citations

Journal ArticleDOI
TL;DR: In this article, an inversion method was used to reconstruct the image of the object without the need for any such prior knowledge, without the knowledge of the shape of the objects and the low spatial frequencies unavoidably lost in experiments.
Abstract: A solution to the inversion problem of scattering would offer aberration-free diffraction-limited three-dimensional images without the resolution and depth-of-field limitations of lens-based tomographic systems. Powerful algorithms are increasingly being used to act as lenses to form such images. Current image reconstruction methods, however, require the knowledge of the shape of the object and the low spatial frequencies unavoidably lost in experiments. Diffractive imaging has thus previously been used to increase the resolution of images obtained by other means. Here we experimentally demonstrate an inversion method, which reconstructs the image of the object without the need for any such prior knowledge.

787 citations

Journal ArticleDOI
16 Dec 2004-Nature
TL;DR: This work demonstrates a versatile technique for imaging nanostructures, based on the use of resonantly tuned soft X-rays for scattering contrast and the direct Fourier inversion of a holographically formed interference pattern, which is a form of Fourier transform holography and appears scalable to diffraction-limited resolution.
Abstract: Our knowledge of the structure of matter is largely based on X-ray diffraction studies of periodic structures and the successful transformation (inversion) of the diffraction patterns into real-space atomic maps. But the determination of non-periodic nanoscale structures by X-rays is much more difficult. Inversion of the measured diffuse X-ray intensity patterns suffers from the intrinsic loss of phase information, and direct imaging methods are limited in resolution by the available X-ray optics. Here we demonstrate a versatile technique for imaging nanostructures, based on the use of resonantly tuned soft X-rays for scattering contrast and the direct Fourier inversion of a holographically formed interference pattern. Our implementation places the sample behind a lithographically manufactured mask with a micrometre-sized sample aperture and a nanometre-sized hole that defines a reference beam. As an example, we have used the resonant X-ray magnetic circular dichroism effect to image the random magnetic domain structure in a Co/Pt multilayer film with a spatial resolution of 50 nm. Our technique, which is a form of Fourier transform holography, is transferable to a wide variety of specimens, appears scalable to diffraction-limited resolution, and is well suited for ultrafast single-shot imaging with coherent X-ray free-electron laser sources.

626 citations