scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Solar-energy conversion and light emission in an atomic monolayer p-n diode

01 Apr 2014-Nature Nanotechnology (Nature Research)-Vol. 9, Iss: 4, pp 257-261
TL;DR: A p-n junction diode based on an electrostatically doped tungsten diselenide (WSe2) monolayer is reported, which is presented as a photovoltaic solar cell, a photodiode and a light-emitting diode, and obtained light-power conversion and electroluminescence efficiencies of 0.5% and 0.1%, respectively.
Abstract: The limitations of the bulk semiconductors currently used in electronic devices-rigidity, heavy weight and high costs--have recently shifted the research efforts to two-dimensional atomic crystals such as graphene and atomically thin transition-metal dichalcogenides. These materials have the potential to be produced at low cost and in large areas, while maintaining high material quality. These properties, as well as their flexibility, make two-dimensional atomic crystals attractive for applications such as solar cells or display panels. The basic building blocks of optoelectronic devices are p-n junction diodes, but they have not yet been demonstrated in a two-dimensional material. Here, we report a p-n junction diode based on an electrostatically doped tungsten diselenide (WSe2) monolayer. We present applications as a photovoltaic solar cell, a photodiode and a light-emitting diode, and obtain light-power conversion and electroluminescence efficiencies of ∼ 0.5% and ∼ 0.1%, respectively. Given recent advances in the large-scale production of two-dimensional crystals, we expect them to profoundly impact future developments in solar, lighting and display technologies.
Citations
More filters
Journal ArticleDOI
TL;DR: An overview and evaluation of state-of-the-art photodetectors based on graphene, other two-dimensional materials, and hybrid systems based on the combination of differentTwo-dimensional crystals or of two- dimensional crystals and other (nano)materials, such as plasmonic nanoparticles, semiconductors, quantum dots, or their integration with (silicon) waveguides are provided.
Abstract: Graphene and other two-dimensional materials, such as transition metal dichalcogenides, have rapidly established themselves as intriguing building blocks for optoelectronic applications, with a strong focus on various photodetection platforms The versatility of these material systems enables their application in areas including ultrafast and ultrasensitive detection of light in the ultraviolet, visible, infrared and terahertz frequency ranges These detectors can be integrated with other photonic components based on the same material, as well as with silicon photonic and electronic technologies Here, we provide an overview and evaluation of state-of-the-art photodetectors based on graphene, other two-dimensional materials, and hybrid systems based on the combination of different two-dimensional crystals or of two-dimensional crystals and other (nano)materials, such as plasmonic nanoparticles, semiconductors, quantum dots, or their integration with (silicon) waveguides

3,025 citations

Journal ArticleDOI
TL;DR: In this paper, the electronic and optical properties and the recent progress in applications of 2D semiconductor transition metal dichalcogenides with emphasis on strong excitonic effects, and spin- and valley-dependent properties are reviewed.
Abstract: The electronic and optical properties and the recent progress in applications of 2D semiconductor transition metal dichalcogenides with emphasis on strong excitonic effects, and spin- and valley-dependent properties are reviewed. Recent advances in the development of atomically thin layers of van der Waals bonded solids have opened up new possibilities for the exploration of 2D physics as well as for materials for applications. Among them, semiconductor transition metal dichalcogenides, MX2 (M = Mo, W; X = S, Se), have bandgaps in the near-infrared to the visible region, in contrast to the zero bandgap of graphene. In the monolayer limit, these materials have been shown to possess direct bandgaps, a property well suited for photonics and optoelectronics applications. Here, we review the electronic and optical properties and the recent progress in applications of 2D semiconductor transition metal dichalcogenides with emphasis on strong excitonic effects, and spin- and valley-dependent properties.

2,612 citations

Journal ArticleDOI
TL;DR: An overview of the key aspects of graphene and related materials, ranging from fundamental research challenges to a variety of applications in a large number of sectors, highlighting the steps necessary to take GRMs from a state of raw potential to a point where they might revolutionize multiple industries are provided.
Abstract: We present the science and technology roadmap for graphene, related two-dimensional crystals, and hybrid systems, targeting an evolution in technology, that might lead to impacts and benefits reaching into most areas of society. This roadmap was developed within the framework of the European Graphene Flagship and outlines the main targets and research areas as best understood at the start of this ambitious project. We provide an overview of the key aspects of graphene and related materials (GRMs), ranging from fundamental research challenges to a variety of applications in a large number of sectors, highlighting the steps necessary to take GRMs from a state of raw potential to a point where they might revolutionize multiple industries. We also define an extensive list of acronyms in an effort to standardize the nomenclature in this emerging field.

2,560 citations

Journal ArticleDOI
TL;DR: In this article, the optical properties and applications of various two-dimensional materials including transition metal dichalcogenides are reviewed with an emphasis on nanophotonic applications, and two different approaches for enhancing their interactions with light: through their integration with external photonic structures, and through intrinsic polaritonic resonances.
Abstract: The optical properties of graphene and emerging two-dimensional materials including transition metal dichalcogenides are reviewed with an emphasis on nanophotonic applications. Two-dimensional materials exhibit diverse electronic properties, ranging from insulating hexagonal boron nitride and semiconducting transition metal dichalcogenides such as molybdenum disulphide, to semimetallic graphene. In this Review, we first discuss the optical properties and applications of various two-dimensional materials, and then cover two different approaches for enhancing their interactions with light: through their integration with external photonic structures, and through intrinsic polaritonic resonances. Finally, we present a narrow-bandgap layered material — black phosphorus — that serendipitously bridges the energy gap between the zero-bandgap graphene and the relatively large-bandgap transition metal dichalcogenides. The plethora of two-dimensional materials and their heterostructures, together with the array of available approaches for enhancing the light–matter interaction, offers the promise of scientific discoveries and nanophotonics technologies across a wide range of the electromagnetic spectrum.

2,414 citations

Journal ArticleDOI
31 Jan 2014-ACS Nano
TL;DR: By critically assessing and comparing the performance of these devices with competing technologies, the merits and shortcomings of this emerging class of electronic materials are identified, thereby providing a roadmap for future development.
Abstract: With advances in exfoliation and synthetic techniques, atomically thin films of semiconducting transition metal dichalcogenides have recently been isolated and characterized. Their two-dimensional structure, coupled with a direct band gap in the visible portion of the electromagnetic spectrum, suggests suitability for digital electronics and optoelectronics. Toward that end, several classes of high-performance devices have been reported along with significant progress in understanding their physical properties. Here, we present a review of the architecture, operating principles, and physics of electronic and optoelectronic devices based on ultrathin transition metal dichalcogenide semiconductors. By critically assessing and comparing the performance of these devices with competing technologies, the merits and shortcomings of this emerging class of electronic materials are identified, thereby providing a roadmap for future development.

2,219 citations


Additional excerpts

  • ...5%.(207) Recently, vertically stacked graphene/TMDC/...

    [...]

References
More filters
Journal ArticleDOI
22 Oct 2004-Science
TL;DR: Monocrystalline graphitic films are found to be a two-dimensional semimetal with a tiny overlap between valence and conductance bands and they exhibit a strong ambipolar electric field effect.
Abstract: We describe monocrystalline graphitic films, which are a few atoms thick but are nonetheless stable under ambient conditions, metallic, and of remarkably high quality. The films are found to be a two-dimensional semimetal with a tiny overlap between valence and conductance bands, and they exhibit a strong ambipolar electric field effect such that electrons and holes in concentrations up to 10 13 per square centimeter and with room-temperature mobilities of ∼10,000 square centimeters per volt-second can be induced by applying gate voltage.

55,532 citations


"Solar-energy conversion and light e..." refers background in this paper

  • ...4a), (2) it exhibits linear current dependence (inset in Fig....

    [...]

Journal ArticleDOI
TL;DR: This work reviews the historical development of Transition metal dichalcogenides, methods for preparing atomically thin layers, their electronic and optical properties, and prospects for future advances in electronics and optoelectronics.
Abstract: Single-layer metal dichalcogenides are two-dimensional semiconductors that present strong potential for electronic and sensing applications complementary to that of graphene.

13,348 citations

Journal ArticleDOI
TL;DR: The electronic properties of ultrathin crystals of molybdenum disulfide consisting of N=1,2,…,6 S-Mo-S monolayers have been investigated by optical spectroscopy and the effect of quantum confinement on the material's electronic structure is traced.
Abstract: The electronic properties of ultrathin crystals of molybdenum disulfide consisting of N=1,2,…,6 S-Mo-S monolayers have been investigated by optical spectroscopy Through characterization by absorption, photoluminescence, and photoconductivity spectroscopy, we trace the effect of quantum confinement on the material's electronic structure With decreasing thickness, the indirect band gap, which lies below the direct gap in the bulk material, shifts upwards in energy by more than 06 eV This leads to a crossover to a direct-gap material in the limit of the single monolayer Unlike the bulk material, the MoS₂ monolayer emits light strongly The freestanding monolayer exhibits an increase in luminescence quantum efficiency by more than a factor of 10⁴ compared with the bulk material

12,822 citations

Journal ArticleDOI
TL;DR: Because monolayer MoS(2) has a direct bandgap, it can be used to construct interband tunnel FETs, which offer lower power consumption than classical transistors, and could also complement graphene in applications that require thin transparent semiconductors, such as optoelectronics and energy harvesting.
Abstract: Two-dimensional materials are attractive for use in next-generation nanoelectronic devices because, compared to one-dimensional materials, it is relatively easy to fabricate complex structures from them. The most widely studied two-dimensional material is graphene, both because of its rich physics and its high mobility. However, pristine graphene does not have a bandgap, a property that is essential for many applications, including transistors. Engineering a graphene bandgap increases fabrication complexity and either reduces mobilities to the level of strained silicon films or requires high voltages. Although single layers of MoS(2) have a large intrinsic bandgap of 1.8 eV (ref. 16), previously reported mobilities in the 0.5-3 cm(2) V(-1) s(-1) range are too low for practical devices. Here, we use a halfnium oxide gate dielectric to demonstrate a room-temperature single-layer MoS(2) mobility of at least 200 cm(2) V(-1) s(-1), similar to that of graphene nanoribbons, and demonstrate transistors with room-temperature current on/off ratios of 1 × 10(8) and ultralow standby power dissipation. Because monolayer MoS(2) has a direct bandgap, it can be used to construct interband tunnel FETs, which offer lower power consumption than classical transistors. Monolayer MoS(2) could also complement graphene in applications that require thin transparent semiconductors, such as optoelectronics and energy harvesting.

12,477 citations


"Solar-energy conversion and light e..." refers background in this paper

  • ...4a), whereas impact excitation shows exponential behaviour27,28, and (3) it occurs with higher efficiency and at lower power density ( 10 W cm(22))....

    [...]

Journal ArticleDOI
TL;DR: By using micromechanical cleavage, a variety of 2D crystals including single layers of boron nitride, graphite, several dichalcogenides, and complex oxides are prepared and studied.
Abstract: We report free-standing atomic crystals that are strictly 2D and can be viewed as individual atomic planes pulled out of bulk crystals or as unrolled single-wall nanotubes. By using micromechanical cleavage, we have prepared and studied a variety of 2D crystals including single layers of boron nitride, graphite, several dichalcogenides, and complex oxides. These atomically thin sheets (essentially gigantic 2D molecules unprotected from the immediate environment) are stable under ambient conditions, exhibit high crystal quality, and are continuous on a macroscopic scale.

10,586 citations


"Solar-energy conversion and light e..." refers background in this paper

  • ...In contrast, our device is operated as a true light-emitting diode with ambipolar carrier injection, and we can exclude hot carrier effects for the following reasons: (1) the electroluminescence is absent under unipolar operation (green curve in Fig....

    [...]