scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Solid fuel use for household cooking: country and regional estimates for 1980-2010.

03 May 2013-Environmental Health Perspectives (National Institute of Environmental Health Sciences)-Vol. 121, Iss: 7, pp 784-790
TL;DR: Worldwide, the proportion of households cooking mainly with solid fuels is decreasing and the absolute number of persons using solid fuels, however, has remained steady globally and is increasing in some regions.
Abstract: Background: Exposure to household air pollution from cooking with solid fuels in simple stoves is a major health risk. Modeling reliable estimates of solid fuel use is needed for monitoring trends ...
Citations
More filters
Journal ArticleDOI
TL;DR: The Global Burden of Disease, Injuries, and Risk Factor study 2013 (GBD 2013) as discussed by the authors provides a timely opportunity to update the comparative risk assessment with new data for exposure, relative risks, and evidence on the appropriate counterfactual risk distribution.

5,668 citations

01 Jan 2016
TL;DR: The comparative risk assessment framework developed for previous iterations of the Global Burden of Disease Study 2015 was used to estimate attributable deaths, disability-adjusted life-years (DALYs), and trends in exposure by age group, sex, year, and geography for 79 behavioural, environmental and occupational risks or clusters of risks from 1990 to 2015.
Abstract: BACKGROUND The Global Burden of Diseases, Injuries, and Risk Factors Study 2015 provides an up-to-date synthesis of the evidence for risk factor exposure and the attributable burden of disease. By providing national and subnational assessments spanning the past 25 years, this study can inform debates on the importance of addressing risks in context. METHODS We used the comparative risk assessment framework developed for previous iterations of the Global Burden of Disease Study to estimate attributable deaths, disability-adjusted life-years (DALYs), and trends in exposure by age group, sex, year, and geography for 79 behavioural, environmental and occupational, and metabolic risks or clusters of risks from 1990 to 2015. This study included 388 risk-outcome pairs that met World Cancer Research Fund-defined criteria for convincing or probable evidence. We extracted relative risk and exposure estimates from randomised controlled trials, cohorts, pooled cohorts, household surveys, census data, satellite data, and other sources. We used statistical models to pool data, adjust for bias, and incorporate covariates. We developed a metric that allows comparisons of exposure across risk factors-the summary exposure value. Using the counterfactual scenario of theoretical minimum risk level, we estimated the portion of deaths and DALYs that could be attributed to a given risk. We decomposed trends in attributable burden into contributions from population growth, population age structure, risk exposure, and risk-deleted cause-specific DALY rates. We characterised risk exposure in relation to a Socio-demographic Index (SDI). FINDINGS Between 1990 and 2015, global exposure to unsafe sanitation, household air pollution, childhood underweight, childhood stunting, and smoking each decreased by more than 25%. Global exposure for several occupational risks, high body-mass index (BMI), and drug use increased by more than 25% over the same period. All risks jointly evaluated in 2015 accounted for 57·8% (95% CI 56·6-58·8) of global deaths and 41·2% (39·8-42·8) of DALYs. In 2015, the ten largest contributors to global DALYs among Level 3 risks were high systolic blood pressure (211·8 million [192·7 million to 231·1 million] global DALYs), smoking (148·6 million [134·2 million to 163·1 million]), high fasting plasma glucose (143·1 million [125·1 million to 163·5 million]), high BMI (120·1 million [83·8 million to 158·4 million]), childhood undernutrition (113·3 million [103·9 million to 123·4 million]), ambient particulate matter (103·1 million [90·8 million to 115·1 million]), high total cholesterol (88·7 million [74·6 million to 105·7 million]), household air pollution (85·6 million [66·7 million to 106·1 million]), alcohol use (85·0 million [77·2 million to 93·0 million]), and diets high in sodium (83·0 million [49·3 million to 127·5 million]). From 1990 to 2015, attributable DALYs declined for micronutrient deficiencies, childhood undernutrition, unsafe sanitation and water, and household air pollution; reductions in risk-deleted DALY rates rather than reductions in exposure drove these declines. Rising exposure contributed to notable increases in attributable DALYs from high BMI, high fasting plasma glucose, occupational carcinogens, and drug use. Environmental risks and childhood undernutrition declined steadily with SDI; low physical activity, high BMI, and high fasting plasma glucose increased with SDI. In 119 countries, metabolic risks, such as high BMI and fasting plasma glucose, contributed the most attributable DALYs in 2015. Regionally, smoking still ranked among the leading five risk factors for attributable DALYs in 109 countries; childhood underweight and unsafe sex remained primary drivers of early death and disability in much of sub-Saharan Africa. INTERPRETATION Declines in some key environmental risks have contributed to declines in critical infectious diseases. Some risks appear to be invariant to SDI. Increasing risks, including high BMI, high fasting plasma glucose, drug use, and some occupational exposures, contribute to rising burden from some conditions, but also provide opportunities for intervention. Some highly preventable risks, such as smoking, remain major causes of attributable DALYs, even as exposure is declining. Public policy makers need to pay attention to the risks that are increasingly major contributors to global burden. FUNDING Bill & Melinda Gates Foundation.

3,920 citations

Journal ArticleDOI
TL;DR: The Global Burden of Disease, Injuries, and Risk Factor study 2013 (GBD 2013) as mentioned in this paper provides a timely opportunity to update the comparative risk assessment with new data for exposure, relative risks, and evidence on the appropriate counterfactual risk distribution.

1,656 citations

Journal ArticleDOI
TL;DR: In this paper, the authors identify three categories of challenges that have to be addressed to maintain and enhance human health in the face of increasingly harmful environmental trends: conceptual and empathy failures (imagination challenges), such as an overreliance on gross domestic product as a measure of human progress, the failure to account for future health and environmental harms over present day gains, and the disproportionate eff ect of those harms on the poor and those in developing nations.

1,452 citations

Journal ArticleDOI
TL;DR: Disease prevention is focused on smoking avoidance and cessation, and future work should focus on smoking cessation campaigns and better understanding disease development and treatment strategies in nonsmokers.

787 citations

References
More filters
Journal ArticleDOI
Stephen S Lim1, Theo Vos, Abraham D. Flaxman1, Goodarz Danaei2  +207 moreInstitutions (92)
TL;DR: In this paper, the authors estimated deaths and disability-adjusted life years (DALYs; sum of years lived with disability [YLD] and years of life lost [YLL]) attributable to the independent effects of 67 risk factors and clusters of risk factors for 21 regions in 1990 and 2010.

9,324 citations

BookDOI
01 Jan 2001
TL;DR: In this article, the authors present a case study in least squares fitting and interpretation of a linear model, where they use nonparametric transformations of X and Y to fit a linear regression model.
Abstract: Introduction * General Aspects of Fitting Regression Models * Missing Data * Multivariable Modeling Strategies * Resampling, Validating, Describing, and Simplifying the Model * S-PLUS Software * Case Study in Least Squares Fitting and Interpretation of a Linear Model * Case Study in Imputation and Data Reduction * Overview of Maximum Likelihood Estimation * Binary Logistic Regression * Logistic Model Case Study 1: Predicting Cause of Death * Logistic Model Case Study 2: Survival of Titanic Passengers * Ordinal Logistic Regression * Case Study in Ordinal Regrssion, Data Reduction, and Penalization * Models Using Nonparametic Transformations of X and Y * Introduction to Survival Analysis * Parametric Survival Models * Case Study in Parametric Survival Modeling and Model Approximation * Cox Proportional Hazards Regression Model * Case Study in Cox Regression

7,264 citations

Book
01 Jan 1987
TL;DR: In this article, the authors present a general classification notation for multilevel models and a discussion of the general structure and maximum likelihood estimation for a multi-level model, as well as the adequacy of Ordinary Least Squares estimates.
Abstract: Contents Dedication Preface Acknowledgements Notation A general classification notation and diagram Glossary Chapter 1 An introduction to multilevel models 1.1 Hierarchically structured data 1.2 School effectiveness 1.3 Sample survey methods 1.4 Repeated measures data 1.5 Event history and survival models 1.6 Discrete response data 1.7 Multivariate models 1.8 Nonlinear models 1.9 Measurement errors 1.10 Cross classifications and multiple membership structures. 1.11 Factor analysis and structural equation models 1.12 Levels of aggregation and ecological fallacies 1.13 Causality 1.14 The latent normal transformation and missing data 1.15 Other texts 1.16 A caveat Chapter 2 The 2-level model 2.1 Introduction 2.2 The 2-level model 2.3 Parameter estimation 2.4 Maximum likelihood estimation using Iterative Generalised Least Squares (IGLS) 2.5 Marginal models and Generalized Estimating Equations (GEE) 2.6 Residuals 2.7 The adequacy of Ordinary Least Squares estimates. 2.8 A 2-level example using longitudinal educational achievement data 2.9 General model diagnostics 2.10 Higher level explanatory variables and compositional effects 2.11 Transforming to normality 2.12 Hypothesis testing and confidence intervals 2.13 Bayesian estimation using Markov Chain Monte Carlo (MCMC) 2.14 Data augmentation Appendix 2.1 The general structure and maximum likelihood estimation for a multilevel model Appendix 2.2 Multilevel residuals estimation Appendix 2.3 Estimation using profile and extended likelihood Appendix 2.4 The EM algorithm Appendix 2.5 MCMC sampling Chapter 3. Three level models and more complex hierarchical structures. 3.1 Complex variance structures 3.2 A 3-level complex variation model example. 3.3 Parameter Constraints 3.4 Weighting units 3.5 Robust (Sandwich) Estimators and Jacknifing 3.6 The bootstrap 3.7 Aggregate level analyses 3.8 Meta analysis 3.9 Design issues Chapter 4. Multilevel Models for discrete response data 4.1 Generalised linear models 4.2 Proportions as responses 4.3 Examples 4.4 Models for multiple response categories 4.5 Models for counts 4.6 Mixed discrete - continuous response models 4.7 A latent normal model for binary responses 4.8 Partitioning variation in discrete response models Appendix 4.1. Generalised linear model estimation Appendix 4.2 Maximum likelihood estimation for generalised linear models Appendix 4.3 MCMC estimation for generalised linear models Appendix 4.4. Bootstrap estimation for generalised linear models Chapter 5. Models for repeated measures data 5.1 Repeated measures data 5.2 A 2-level repeated measures model 5.3 A polynomial model example for adolescent growth and the prediction of adult height 5.4 Modelling an autocorrelation structure at level 1. 5.5 A growth model with autocorrelated residuals 5.6 Multivariate repeated measures models 5.7 Scaling across time 5.8 Cross-over designs 5.9 Missing data 5.10 Longitudinal discrete response data Chapter 6. Multivariate multilevel data 6.1 Introduction 6.2 The basic 2-level multivariate model 6.3 Rotation Designs 6.4 A rotation design example using Science test scores 6.5 Informative response selection: subject choice in examinations 6.6 Multivariate structures at higher levels and future predictions 6.7 Multivariate responses at several levels 6.8 Principal Components analysis Appendix 6.1 MCMC algorithm for a multivariate normal response model with constraints Chapter 7. Latent normal models for multivariate data 7.1 The normal multilevel multivariate model 7.2 Sampling binary responses 7.3 Sampling ordered categorical responses 7.4 Sampling unordered categorical responses 7.5 Sampling count data 7.6 Sampling continuous non-normal data 7.7 Sampling the level 1 and level 2 covariance matrices 7.8 Model fit 7.9 Partially ordered data 7.10 Hybrid normal/ordered variables 7.11 Discussion Chapter 8. Multilevel factor analysis, structural equation and mixture models 8.1 A 2-stage 2-level factor model 8.2 A general multilevel factor model 8.3 MCMC estimation for the factor model 8.4 Structural equation models 8.5 Discrete response multilevel structural equation models 8.6 More complex hierarchical latent variable models 8.7 Multilevel mixture models Chapter 9. Nonlinear multilevel models 9.1 Introduction 9.2 Nonlinear functions of linear components 9.3 Estimating population means 9.4 Nonlinear functions for variances and covariances 9.5 Examples of nonlinear growth and nonlinear level 1 variance Appendix 9.1 Nonlinear model estimation Chapter 10. Multilevel modelling in sample surveys 10.1 Sample survey structures 10.2 Population structures 10.3 Small area estimation Chapter 11 Multilevel event history and survival models 11.1 Introduction 11.2 Censoring 11.3 Hazard and survival funtions 11.4 Parametric proportional hazard models 11.5 The semiparametric Cox model 11.6 Tied observations 11.7 Repeated events proportional hazard models 11.8 Example using birth interval data 11.9 Log duration models 11.10 Examples with birth interval data and children s activity episodes 11.11 The grouped discrete time hazards model 11.12 Discrete time latent normal event history models Chapter 12. Cross classified data structures 12.1 Random cross classifications 12.2 A basic cross classified model 12.3 Examination results for a cross classification of schools 12.4 Interactions in cross classifications 12.5 Cross classifications with one unit per cell 12.6 Multivariate cross classified models 12.7 A general notation for cross classifications 12.8 MCMC estimation in cross classified models Appendix 12.1 IGLS Estimation for cross classified data. Chapter 13 Multiple membership models 13.1 Multiple membership structures 13.2 Notation and classifications for multiple membership structures 13.3 An example of salmonella infection 13.4 A repeated measures multiple membership model 13.5 Individuals as higher level units 13.5.1 Example of research grant awards 13.6 Spatial models 13.7 Missing identification models Appendix 13.1 MCMC estimation for multiple membership models. Chapter 14 Measurement errors in multilevel models 14.1 A basic measurement error model 14.2 Moment based estimators 14.3 A 2-level example with measurement error at both levels. 14.4 Multivariate responses 14.5 Nonlinear models 14.6 Measurement errors for discrete explanatory variables 14.7 MCMC estimation for measurement error models Appendix 14.1 Measurement error estimation 14.2 MCMC estimation for measurement error models Chapter 15. Smoothing models for multilevel data. 15.1 Introduction 15.2. Smoothing estimators 15.3 Smoothing splines 15.4 Semi parametric smoothing models 15.5 Multilevel smoothing models 15.6 General multilevel semi-parametric smoothing models 15.7 Generalised linear models 15.8 An example Fixed Random 15.9 Conclusions Chapter 16. Missing data, partially observed data and multiple imputation 16.1 Creating a completed data set 16.2 Joint modelling for missing data 16.3 A two level model with responses of different types at both levels. 16.4 Multiple imputation 16.5 A simulation example of multiple imputation for missing data 16.6 Longitudinal data with attrition 16.7 Partially known data values 16.8 Conclusions Chapter 17 Multilevel models with correlated random effects 17.1 Non-independence of level 2 residuals 17.2 MCMC estimation for non-independent level 2 residuals 17.3 Adaptive proposal distributions in MCMC estimation 17.4 MCMC estimation for non-independent level 1 residuals 17.5 Modelling the level 1 variance as a function of explanatory variables with random effects 17.6 Discrete responses with correlated random effects 17.7 Calculating the DIC statistic 17.8 A growth data set 17.9 Conclusions Chapter 18. Software for multilevel modelling References Author index Subject index

5,839 citations

Book
01 Apr 2002
TL;DR: This work focuses on the development of a single model for Multilevel Regression, which has been shown to provide good predictive power in relation to both the number of cases and the severity of the cases.
Abstract: 1. Introduction to Multilevel Analysis. 2. The Basic Two-Level Regression Model. 3. Estimation and Hypothesis Testing in Multilevel Regression. 4. Some Important Methodological and Statistical Issues. 5. Analyzing Longitudinal Data. 6. The Multilevel Generalized Linear Model for Dichotomous Data and Proportions. 7. The Multilevel Generalized Linear Model for Categorical and Count Data. 8. Multilevel Survival Analysis. 9. Cross-classified Multilevel Models. 10. Multivariate Multilevel Regression Models. 11. The Multilevel Approach to Meta-Analysis. 12. Sample Sizes and Power Analysis in Multilevel Regression. 13. Advanced Issues in Estimation and Testing. 14. Multilevel Factor Models. 15. Multilevel Path Models. 16. Latent Curve Models.

5,395 citations

Journal ArticleDOI
TL;DR: The basic Bayesian framework must be constrained, use of the step function in computing the probability that a team would rank best or worst in a league, and implementation of a Dirichlet process prior are presented.
Abstract: (2003). Regression Modeling Strategies: With Applications to Linear Models, Logistic Regression, and Survival Analysis. Journal of the American Statistical Association: Vol. 98, No. 461, pp. 257-258.

4,086 citations


"Solid fuel use for household cookin..." refers background in this paper

  • ...Region a Population exposed [millions] (95% confidence intervals) 1990 2000 2010...

    [...]

Related Papers (5)