scispace - formally typeset
Search or ask a question
Book

Solid phase microextraction : theory and practice

01 Jan 1997-
TL;DR: The inventor of the technique, Janusz Pawliszyn, describes the theoretical and practical aspects of this new technology, which received an "RD" rating.
Abstract: Solid Phase Microextraction: Theory and Practice Janusz Pawliszyn Solid phase microextraction (SPME) is a recently proposed solvent-free sampling and sample preparation technique. SPME represents a quick, sensitive, and economical approach that can be adopted for field work and can be easily integrated with present analytical instrumentation into an automation process. Written by the inventor of the technique, Solid Phase Microextraction: Theory and Practice describes the theoretical and practical aspects of this new technology, which received an "RD* Experiments for beginners;* A summary of the practical applications of SPME in environmental, food, pharmaceutical, and forensic settings;* Material suitable for SPME courses or self-guided study.
Citations
More filters
Journal ArticleDOI
TL;DR: A simple, fast, and inexpensive method for the determination of pesticide residues in fruits and vegetables is introduced and effectively removes many polar matrix components, such as organic acids, certain polar pigments, and sugars, to some extent from the food extracts.
Abstract: A simple, fast, and inexpensive method for the determination of pesticide residues in fruits and vegetables is introduced. The procedure involves initial single-phase extraction of 10 g sample with 10 mL acetonitrile, followed by liquid-liquid partitioning formed by addition of 4 g anhydrous MgSO4 plus 1 g NaCl. Removal of residual water and cleanup are performed simultaneously by using a rapid procedure called dispersive solid-phase extraction (dispersive-SPE), in which 150 mg anhydrous MgSO4 and 25 mg primary secondary amine (PSA) sorbent are simply mixed with 1 mL acetonitrile extract. The dispersive-SPE with PSA effectively removes many polar matrix components, such as organic acids, certain polar pigments, and sugars, to some extent from the food extracts. Gas chromatography/mass spectrometry (GC/MS) is then used for quantitative and confirmatory analysis of GC-amenable pesticides. Recoveries between 85 and 101% (mostly > 95%) and repeatabilities typically < 5% have been achieved for a wide range of fortified pesticides, including very polar and basic compounds such as methamidophos, acephate, omethoate, imazalil, and thiabendazole. Using this method, a single chemist can prepare a batch of 6 previously chopped samples in < 30 min with approximately 1 dollar (U.S.) of materials per sample.

4,376 citations

Journal ArticleDOI
TL;DR: This review presents an overview of the dynamically developing field of mass spectrometry-based metabolomics, a technique that analyzes all detectable analytes in a given sample with subsequent classification of samples and identification of differentially expressed metabolites, which define the sample classes.
Abstract: This review presents an overview of the dynamically developing field of mass spectrometry-based metabolomics. Metabolomics aims at the comprehensive and quantitative analysis of wide arrays of metabolites in biological samples. These numerous analytes have very diverse physico-chemical properties and occur at different abundance levels. Consequently, comprehensive metabolomics investigations are primarily a challenge for analytical chemistry and specifically mass spectrometry has vast potential as a tool for this type of investigation. Metabolomics require special approaches for sample preparation, separation, and mass spectrometric analysis. Current examples of those approaches are described in this review. It primarily focuses on metabolic fingerprinting, a technique that analyzes all detectable analytes in a given sample with subsequent classification of samples and identification of differentially expressed metabolites, which define the sample classes. To perform this complex task, data analysis tools, metabolite libraries, and databases are required. Therefore, recent advances in metabolomics bioinformatics are also discussed.

1,954 citations

Journal ArticleDOI
TL;DR: The SPME technique can be used routinely in combination with gas Chromatography (GC), GC-mass spectrometry (GC-MS), high-performance liquid chromatography (HPLC) or LC-MS, and can improve the detection limits.

1,023 citations

Journal ArticleDOI
TL;DR: In this paper, the state of the art in using passive sampling technology for environmental monitoring of waterborne organic and inorganic pollutants is reviewed, and strategies for sampler design, calibration, in situ sampling and quality control issues are discussed.
Abstract: We review the state of the art in using passive sampling technology for environmental monitoring of waterborne organic and inorganic pollutants. We discuss strategies for sampler design, calibration, in situ sampling and quality-control issues, and advantages and challenges associated with passive sampling in aqueous environments. We then review typical applications of passive samplers in assessing the aquatic environment.

785 citations

Journal ArticleDOI
TL;DR: The main objective of this contribution is to describe the development of the concepts, techniques and devices associated with solid-phase microextraction as a response to the evolution of understanding of the fundamental principles behind this technique.

740 citations