scispace - formally typeset
Search or ask a question
Book

Solid State Chemistry and its Applications

01 Jan 1984-
TL;DR: In this paper, the authors present a detailed description of the properties of solid state chemistry, including point groups, space groups, and crystal structure, as well as some factors which influence crystal structure.
Abstract: What is Solid State Chemistry? Preparative Methods. Characterization of Inorganic Solids: Application of Physical Techniques. Thermal Analysis. X-ray Diffraction. Point Groups, Space Groups and Crystal Structure. Descriptive Crystal Chemistry. Some Factors Which Influence Crystal Structure. Crystal Defects and Non-Stoichiometry. Solid Solutions. Interpretation of Phase Diagrams. Phase Transitions. Ionic Conductivity and Solid Electrolytes. Electronic Properties and Band Theory: Metals, Semiconductors, Inorganic Solids, Colour. Other Electrical Properties. Magnetic Properties. Optical Properties: Luminescence, Lasers. Glass. Cement and Concrete. Refractories. Organic Solid State Chemistry. Appendixes. Index.
Citations
More filters
Journal ArticleDOI
TL;DR: In the last 30 years, research efforts by the scientific community intensified significantly, stemming from the pioneering work of Takahashi and co-workers, with the initial development of mixed ionic-electronic conducting (MIEC) oxides.

1,037 citations


Cites background from "Solid State Chemistry and its Appli..."

  • ...The concept of the energy bands is therefore required to have a good understanding of the concept of electron and electron holes [32,41]....

    [...]

  • ...In other words by exhibiting defects this particular compound would be at its minimum Gibbs free energy [31,32]....

    [...]

Journal ArticleDOI
TL;DR: The average electronic oxide polarizability α02− of numerous single component oxides has been calculated on the basis of two different properties: linear refractive index n0 and energy gap Eg, which have demonstrated remarkable correlation.
Abstract: The average electronic oxide polarizability α02− of numerous single component oxides has been calculated on the basis of two different properties: linear refractive index n0 and energy gap Eg, which have demonstrated remarkable correlation. The optical basicity Λ of the oxides has been estimated on the basis of average electronic oxide polarizability calculated from the refractive index Λ(n0) and the energy gap Λ(Eg). A good agreement has been observed between the optical basicity data obtained using independent initial quantities. The simple oxides have been separated into three groups according to the values of their oxide polarizability. The α02− values (above 3 A) obtained for PbO, Sb2O3, and Bi2O3 have been attributed to the high cation polarizability and the presence of a lone pair in the valence shell of the cation.

888 citations

Journal ArticleDOI
Jing Zhang1, Meijun Li1, Zhaochi Feng1, Jun Chen1, Can Li1 
TL;DR: It is suggested that the rutile phase starts to form at the interfaces between the anatase particles in the agglomerated TiO2 particles, which turns out to change into the r Rutile phase more easily than that in the outer surface region of theAgglomeration of the TiO1 particles.
Abstract: Phase transformation of TiO2 from anatase to rutile is studied by UV Raman spectroscopy excited by 325 and 244 nm lasers, visible Raman spectroscopy excited by 532 nm laser, X-ray diffraction (XRD), and transmission electron microscopy (TEM). UV Raman spectroscopy is found to be more sensitive to the surface region of TiO2 than visible Raman spectroscopy and XRD because TiO2 strongly absorbs UV light. The anatase phase is detected by UV Raman spectroscopy for the sample calcined at higher temperatures than when it is detected by visible Raman spectroscopy and XRD. The inconsistency in the results from the above three techniques suggests that the anatase phase of TiO2 at the surface region can remain at relatively higher calcination temperatures than that in the bulk during the phase transformation. The TEM results show that small particles agglomerate into big particles when the TiO2 sample is calcined at elevated temperatures and the agglomeration of the TiO2 particles is along with the phase transformat...

853 citations

Journal ArticleDOI
TL;DR: In this paper, the structure, main properties and preparation methods of cationic and anionic clays are reviewed in light of the versatility and potential of these materials, which may be useful tools in the move towards establishing environmentally friendly technologies.

791 citations

References
More filters
Journal ArticleDOI
TL;DR: The effective ionic radii of Shannon & Prewitt [Acta Cryst. (1969), B25, 925-945] are revised to include more unusual oxidation states and coordinations as mentioned in this paper.
Abstract: The effective ionic radii of Shannon & Prewitt [Acta Cryst. (1969), B25, 925-945] are revised to include more unusual oxidation states and coordinations. Revisions are based on new structural data, empirical bond strength-bond length relationships, and plots of (1) radii vs volume, (2) radii vs coordination number, and (3) radii vs oxidation state. Factors which affect radii additivity are polyhedral distortion, partial occupancy of cation sites, covalence, and metallic character. Mean Nb5+-O and Mo6+-O octahedral distances are linearly dependent on distortion. A decrease in cation occupancy increases mean Li+-O, Na+-O, and Ag+-O distances in a predictable manner. Covalence strongly shortens Fe2+-X, Co2+-X, Ni2+-X, Mn2+-X, Cu+-X, Ag+-X, and M-H- bonds as the electronegativity of X or M decreases. Smaller effects are seen for Zn2+-X, Cd2+-X, In2+-X, pb2+-X, and TI+-X. Bonds with delocalized electrons and therefore metallic character, e.g. Sm-S, V-S, and Re-O, are significantly shorter than similar bonds with localized electrons.

51,997 citations


"Solid State Chemistry and its Appli..." refers background in this paper

  • ...In the most recent comprehensive compilations of ionic radii, of Shannon and Prewitt (1969, 1970), cations are larger and anions smaller than previously thought....

    [...]

Journal ArticleDOI

14,205 citations


"Solid State Chemistry and its Appli..." refers background in this paper

  • ...D. A. Fraser (1986), The Physics of Semiconductor Devices, Oxford University Press, Oxford....

    [...]

Book
01 Dec 1960
TL;DR: In this paper, the authors present a model for the development of the MICROSTRUCTURE in CERAMICS based on phase transformation, glass formation and glass-Ceramics.
Abstract: INTRODUCTION. Ceramic Processes and Products. CHARACTERISTICS OF CERAMIC SOLIDS. Structure of Crystals. Structure of Glasses. Structural Imperfections. Surfaces, Interfaces, and Grain Boundaries. Atom Mobility. DEVELOPMENT OF MICROSTRUCTURE IN CERAMICS. Ceramic Phase Equilibrium Diagrams. Phase Transformation, Glass Formation and Glass--Ceramics. Reactions with and between Solids. Grain Growth. Sintering and Vitrification. Microstructure of Ceramics. PROPERTIES OF CERAMICS. Thermal Properties. Optical Properties. Plastic Deformation, Viscous Flow and Creep. Elasticity, Anelasticity and Strength. Thermal and Compositional Stresses. Electrical Conductivity. Dielectric Properties. Magnetic Properties.

6,650 citations

Journal Article
TL;DR: Schawlow and Townes as discussed by the authors proposed a technique for the generation of very monochromatic radiation in the infra-red optical region of the spectrum using an alkali vapour as the active medium.
Abstract: Schawlow and Townes1 have proposed a technique for the generation of very monochromatic radiation in the infra-red optical region of the spectrum using an alkali vapour as the active medium. Javan2 and Sanders3 have discussed proposals involving electron-excited gaseous systems. In this laboratory an optical pumping technique has been successfully applied to a fluorescent solid resulting in the attainment of negative temperatures and stimulated optical emission at a wave-length of 6943 A. ; the active material used was ruby (chromium in corundum). After demonstration in 1954 of the 'maser' principle (microwave amplification by stimulated emission of radiation), systems were sought in which the effect occurred in the infrared and visible spectrum. This goal was reached in 1960 when Theodore Maiman achieved optical laser action in ruby.

3,646 citations

Book
01 Jan 1973

1,907 citations