scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Solution coating of large-area organic semiconductor thin films with aligned single-crystalline domains

TL;DR: An approach--termed fluid-enhanced crystal engineering (FLUENCE)--that allows for a high degree of morphological control of solution-printed thin films and may find use in the fabrication of high-performance, large-area printed electronics.
Abstract: Solution coating of organic semiconductors offers great potential for achieving low-cost manufacturing of large-area and flexible electronics. However, the rapid coating speed needed for industrial-scale production poses challenges to the control of thin-film morphology. Here, we report an approach—termed fluid-enhanced crystal engineering (FLUENCE)—that allows for a high degree of morphological control of solution-printed thin films. We designed a micropillar-patterned printing blade to induce recirculation in the ink for enhancing crystal growth, and engineered the curvature of the ink meniscus to control crystal nucleation. Using FLUENCE, we demonstrate the fast coating and patterning of millimetre-wide, centimetre-long, highly aligned single-crystalline organic semiconductor thin films. In particular, we fabricated thin films of 6,13-bis(triisopropylsilylethynyl) pentacene having non-equilibrium single-crystalline domains and an unprecedented average and maximum mobilities of 8.1±1.2 cm2 V−1 s−1 and 11 cm2 V−1 s−1. FLUENCE of organic semiconductors with non-equilibrium single-crystalline domains may find use in the fabrication of high-performance, large-area printed electronics. Solution printing of organic semiconductors could in principle be scaled to industrial needs, yet attaining aligned single-crystals directly with this method has been challenging. By using a micropillar-patterned printing blade designed to enhance the control of crystal nucleation and growth, thin films of macroscopic, highly aligned single crystals of organic semiconductors can now be fabricated.
Citations
More filters
Journal ArticleDOI
TL;DR: In this paper, the state-of-the-art in organic field effect transistors (OFETs) are reviewed in light of requirements for demanding future applications, in particular active-matrix addressing for flexible organic light-emitting diode (OLED) displays.
Abstract: Over the past 25 years, organic field-effect transistors (OFETs) have witnessed impressive improvements in materials performance by 3–4 orders of magnitude, and many of the key materials discoveries have been published in Advanced Materials. This includes some of the most recent demonstrations of organic field-effect transistors with performance that clearly exceeds that of benchmark amorphous silicon-based devices. In this article, state-of-the-art in OFETs are reviewed in light of requirements for demanding future applications, in particular active-matrix addressing for flexible organic light-emitting diode (OLED) displays. An overview is provided over both small molecule and conjugated polymer materials for which field-effect mobilities exceeding > 1 cm2 V–1 s–1 have been reported. Current understanding is also reviewed of their charge transport physics that allows reaching such unexpectedly high mobilities in these weakly van der Waals bonded and structurally comparatively disordered materials with a view towards understanding the potential for further improvement in performance in the future.

1,992 citations

Journal ArticleDOI
TL;DR: The growth of a highly aligned meta-stable structure of 2,7-dioctyl[1]benzothieno[3,2-b][1] Benzothiophene (C8-BTBT) is described from a blended solution of C8- BTBT and polystyrene by using a novel off-centre spin-coating method, indicating their potential for transparent, high-performance organic electronics.
Abstract: One of the advantages of organic over inorganic semiconductors is they can be grown from solution, but their electrical mobility is often poor. Yuan et al. report a technique for fabricating organic transistors with mobilities far beyond that of amorphous silicon and close to that of polycrystalline silicon.

1,130 citations

Journal ArticleDOI
TL;DR: This paper presents a new mesoporous-based approach to composites engineering that combines high-performance materials such as cadmium, cadmiferousmaterials, and polymethine with low-cost materials like brass and copper.
Abstract: Xugang Guo,*,† Antonio Facchetti,*,‡,§ and Tobin J. Marks*,‡ †Department of Materials Science and Engineering, South University of Science and Technology of China, No. 1088, Xueyuan Road, Shenzhen, Guangdong 518055, China ‡Department of Chemistry and the Materials Research Center, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States Polyera Corporation, 8045 Lamon Avenue, Skokie, Illinois 60077, United States

810 citations

Journal ArticleDOI
TL;DR: In this article, a simple, high throughput and low-cost doctor-blade coating process was used for the fabrication of perovskite solar cell panels, which can be compatible with the roll-to-roll fabrication process.
Abstract: Organolead trihalide perovskites (OTPs) are nature abundant materials with prospects as future low-cost renewable energy sources boosted by the solution process capability of these materials. Here we report the fabrication of efficient OTP devices by a simple, high throughput and low-cost doctor-blade coating process which can be compatible with the roll-to-roll fabrication process for the large scale production of perovskite solar cell panels. The formulation of appropriate precursor inks by removing impurities is shown to be critical in the formation of continuous, pin-hole free and phase-pure perovskite films on large area substrates, which is assisted by a high deposition temperature to guide the nucleation and grain growth process. The domain size reached 80–250 μm in 1.5–2 μm thick bladed films. By controlling the stoichiometry and thickness of the OTP films, highest device efficiencies of 12.8% and 15.1% are achieved in the devices fabricated on poly(3,4-ethylenedioxythiophene) polystyrene sulfonate and cross-linked N4,N4′-bis(4-(6-((3-ethyloxetan-3-yl)methoxy)hexyl)phenyl)–N4,N4′-diphenylbiphenyl-4,4′-diamine covered ITO substrates. Interestingly, the carrier diffusion length in doctor-bladed OTP films is beyond 3.5 μm which is significantly larger than in the spin-coated films, due to the formation of crystalline grains with a very large size by the doctor-blade coating method.

596 citations

References
More filters
Book
01 Jan 1968

7,023 citations

Journal ArticleDOI
23 Oct 1997-Nature
TL;DR: In this article, the authors ascribe the characteristic pattern of the deposition to a form of capillary flow in which pinning of the contact line of the drying drop ensures that liquid evaporating from the edge is replenished by liquid from the interior.
Abstract: When a spilled drop of coffee dries on a solid surface, it leaves a dense, ring-like deposit along the perimeter (Fig 1a) The coffee—initially dispersed over the entire drop—becomes concentrated into a tiny fraction of it Such ring deposits are common wherever drops containing dispersed solids evaporate on a surface, and they influence processes such as printing, washing and coating1,2,3,4,5 Ring deposits also provide a potential means to write or deposit a fine pattern onto a surface Here we ascribe the characteristic pattern of the deposition to a form of capillary flow in which pinning of the contact line of the drying drop ensures that liquid evaporating from the edge is replenished by liquid from the interior The resulting outward flow can carry virtually all the dispersed material to the edge This mechanism predicts a distinctive power-law growth of the ring mass with time—a law independent of the particular substrate, carrier fluid or deposited solids We have verified this law by microscopic observations of colloidal fluids

5,553 citations

Journal ArticleDOI
21 Jul 2011-Nature
TL;DR: It is shown that mixing fine droplets of an antisolvent and a solution of an active semiconducting component within a confined area on an amorphous substrate can trigger the controlled formation of exceptionally uniform single-crystal or polycrystalline thin films that grow at the liquid–air interfaces.
Abstract: Printing electronic devices using semiconducting 'ink' is seen as a promising route to cheap, large-area and flexible electronics, but the performance of such devices suffers from the relatively poor crystallinity of the printed material. Hiromi Minemawari and colleagues have developed an inkjet-based printing technique involving controlled mixing on a surface of two solutions — the semiconductor (C8-BTBT) in its solvent and a liquid in which the semiconductor is insoluble. The products of this antisolvent crystallization technique are thin semiconductor films with exceptionally high and uniform crystallinity. The use of single crystals has been fundamental to the development of semiconductor microelectronics and solid-state science1. Whether based on inorganic2,3,4,5 or organic6,7,8 materials, the devices that show the highest performance rely on single-crystal interfaces, with their nearly perfect translational symmetry and exceptionally high chemical purity. Attention has recently been focused on developing simple ways of producing electronic devices by means of printing technologies. ‘Printed electronics’ is being explored for the manufacture of large-area and flexible electronic devices by the patterned application of functional inks containing soluble or dispersed semiconducting materials9,10,11. However, because of the strong self-organizing tendency of the deposited materials12,13, the production of semiconducting thin films of high crystallinity (indispensable for realizing high carrier mobility) may be incompatible with conventional printing processes. Here we develop a method that combines the technique of antisolvent crystallization14 with inkjet printing to produce organic semiconducting thin films of high crystallinity. Specifically, we show that mixing fine droplets of an antisolvent and a solution of an active semiconducting component within a confined area on an amorphous substrate can trigger the controlled formation of exceptionally uniform single-crystal or polycrystalline thin films that grow at the liquid–air interfaces. Using this approach, we have printed single crystals of the organic semiconductor 2,7-dioctyl[1]benzothieno[3,2-b][1]benzothiophene (C8-BTBT) (ref. 15), yielding thin-film transistors with average carrier mobilities as high as 16.4 cm2 V−1 s−1. This printing technique constitutes a major step towards the use of high-performance single-crystal semiconductor devices for large-area and flexible electronics applications.

1,505 citations

Journal ArticleDOI
TL;DR: The authors would like to thank M. Chabinyc, H. Ade, B. Noriega, K. Vandewal, and D. Duong for fruitful discussions in the preparation of this review and the Center for Advanced Molecular Photovoltaics for funding.
Abstract: The authors would like to thank M. Chabinyc, H. Ade, B. Collins, R. Noriega, K. Vandewal, and D. Duong for fruitful discussions in the preparation of this review. Stanford Synchrotron Radiation Lightsource (SSRL) is a national user facility operated by Stanford University on behalf of the U.S. Department of Energy, Office of Basic Energy Sciences. This publication was partially supported by the Center for Advanced Molecular Photovoltaics (Award No. KUS-C1-015-21), made by King Abdullah University of Science and Technology (KAUST).

1,072 citations

Journal ArticleDOI
14 Dec 2006-Nature
TL;DR: The results suggest that the fabrication approach constitutes a promising step that might ultimately allow to utilize high-performance organic single-crystal field-effect transistors for large-area electronics applications.
Abstract: Organic flexible electronics are being developed for computer displays, radio frequency identification tags, sensors and devices that have not been dreamt of yet. Practical applications so far are few, as their electrical performance is poor compared with conventional electronics. In terms of charge carrier mobility, however, field-effect transistors made of organic single crystals have a very high performance. The obstacle to the use of single-crystal devices is that they have to be individually hand-made. The report of a method of fabricating large arrays of high performance transistor devices by direct patterning of single crystals onto clean silicon surfaces or flexible plastics may help to change that. The new method retains the high performance of field-effect transistors even after significant bending. Field-effect transistors made of organic single crystals are ideal for studying the charge transport characteristics of organic semiconductor materials1. Their outstanding device performance2,3,4,5,6,7,8, relative to that of transistors made of organic thin films, makes them also attractive candidates for electronic applications such as active matrix displays and sensor arrays. These applications require minimal cross-talk between neighbouring devices. In the case of thin film systems, simple patterning of the active semiconductor layer9,10 minimizes cross-talk. But when using organic single crystals, the only approach currently available for creating arrays of separate devices is manual selection and placing of individual crystals—a process prohibitive for producing devices at high density and with reasonable throughput. In contrast, inorganic crystals have been grown in extended arrays11,12,13, and efficient and large-area fabrication of silicon crystalline islands with high mobilities for electronic applications has been reported14,15. Here we describe a method for effectively fabricating large arrays of single crystals of a wide range of organic semiconductor materials directly onto transistor source–drain electrodes. We find that film domains of octadecyltriethoxysilane microcontact-printed onto either clean Si/SiO2 surfaces or flexible plastic provide control over the nucleation of vapour-grown organic single crystals. This allows us to fabricate large arrays of high-performance organic single-crystal field-effect transistors with mobilities as high as 2.4 cm2 V-1 s-1 and on/off ratios greater than 107, and devices on flexible substrates that retain their performance after significant bending. These results suggest that our fabrication approach constitutes a promising step that might ultimately allow us to utilize high-performance organic single-crystal field-effect transistors for large-area electronics applications.

968 citations