scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Solvent-Free Synthesis of Ultrafine Tungsten Carbide Nanoparticles-Decorated Carbon Nanosheets for Microwave Absorption.

18 Jul 2020-Nano-micro Letters (Springer Science and Business Media LLC)-Vol. 12, Iss: 1, pp 153-153
TL;DR: It is found that the weight ratio of DCA to AM can regulate chemical composition of tungsten carbide/carbon composites, while less impact on the average size of WC 1− x nanoparticles.
Abstract: Carbides/carbon composites are emerging as a new kind of binary dielectric systems with good microwave absorption performance. Herein, we obtain a series of tungsten carbide/carbon composites through a simple solvent-free strategy, where the solid mixture of dicyandiamide (DCA) and ammonium metatungstate (AM) is employed as the precursor. Ultrafine cubic WC1−x nanoparticles (3–4 nm) are in situ generated and uniformly dispersed on carbon nanosheets. This configuration overcomes some disadvantages of conventional carbides/carbon composites and is greatly helpful for electromagnetic dissipation. It is found that the weight ratio of DCA to AM can regulate chemical composition of these composites, while less impact on the average size of WC1−x nanoparticles. With the increase in carbon nanosheets, the relative complex permittivity and dielectric loss ability are constantly enhanced through conductive loss and polarization relaxation. The different dielectric properties endow these composites with distinguishable attenuation ability and impedance matching. When DCA/AM weight ratio is 6.0, the optimized composite can produce good microwave absorption performance, whose strongest reflection loss intensity reaches up to − 55.6 dB at 17.5 GHz and qualified absorption bandwidth covers 3.6–18.0 GHz by manipulating the thickness from 1.0 to 5.0 mm. Such a performance is superior to many conventional carbides/carbon composites.

Content maybe subject to copyright    Report

Citations
More filters
Journal ArticleDOI
TL;DR: In this article, a carbon aerogel was fabricated via fresh shaddock peel by facile freeze-drying method and calcination process, forming porous network architecture, and the effective absorption bandwidth covers 5.80 GHz at a relatively thin thickness of only 1.7mm.
Abstract: . Eco-friendly electromagnetic wave absorbing materials with excellent thermal infrared stealth property, heat-insulating ability and compression resistance are highly attractive in practical applications. Meeting the aforesaid requirements simultaneously is a formidable challenge. Herein, ultra-light carbon aerogels were fabricated via fresh shaddock peel by facile freeze-drying method and calcination process, forming porous network architecture. With the heating platform temperature of 70 °C, the upper surface temperatures of the as-prepared carbon aerogel present a slow upward trend. The color of the sample surface in thermal infrared images is similar to that of the surroundings. With the maximum compressive stress of 2.435 kPa, the carbon aerogels can provide favorable endurance. The shaddock peel-based carbon aerogels possess the minimum reflection loss value (RLmin) of − 29.50 dB in X band. Meanwhile, the effective absorption bandwidth covers 5.80 GHz at a relatively thin thickness of only 1.7 mm. With the detection theta of 0°, the maximum radar cross-sectional (RCS) reduction values of 16.28 dB m2 can be achieved. Theoretical simulations of RCS have aroused extensive interest owing to their ingenious design and time-saving feature. This work paves the way for preparing multi-functional microwave absorbers derived from biomass raw materials under the guidance of RCS simulations.

201 citations

Journal ArticleDOI
TL;DR: Based on the high EM absorption, a strain sensor is designed through the resonance coupling of the patterned NiCo2O4 structure, and these strategies for tuning EM performance and constructing devices can be extended to other EM functional materials to promote the development of electromagnetic driven devices.
Abstract: It is extremely unattainable for a material to simultaneously obtain efficient electromagnetic (EM) absorption and green shielding performance, which has not been reported due to the competition between conduction loss and reflection. Herein, by tailoring the internal structure through nano-micro engineering, a NiCo2O4 nanofiber with integrated EM absorbing and green shielding as well as strain sensing functions is obtained. With the improvement of charge transport capability of the nanofiber, the performance can be converted from EM absorption to shielding, or even coexist. Particularly, as the conductivity rising, the reflection loss declines from − 52.72 to − 10.5 dB, while the EM interference shielding effectiveness increases to 13.4 dB, suggesting the coexistence of the two EM functions. Furthermore, based on the high EM absorption, a strain sensor is designed through the resonance coupling of the patterned NiCo2O4 structure. These strategies for tuning EM performance and constructing devices can be extended to other EM functional materials to promote the development of electromagnetic driven devices.

187 citations

Journal ArticleDOI
Zhen Xiang1, Yuyang Shi1, Xiaojie Zhu1, Lei Cai1, Wei Lu1 
TL;DR: In this article, an electrostatic assembly approach for fabricating 2D/1D/0D construction of Ti3C2Tx/carbon nanotubes/Co nanoparticles was proposed, which achieved a strong reflection loss of -85.8 dB and an ultrathin thickness of 1.4 mm.
Abstract: High-performance electromagnetic wave absorption and electromagnetic interference (EMI) shielding materials with multifunctional characters have attracted extensive scientific and technological interest, but they remain a huge challenge. Here, we reported an electrostatic assembly approach for fabricating 2D/1D/0D construction of Ti3C2Tx/carbon nanotubes/Co nanoparticles (Ti3C2Tx/CNTs/Co) nanocomposites with an excellent electromagnetic wave absorption, EMI shielding efficiency, flexibility, hydrophobicity, and photothermal conversion performance. As expected, a strong reflection loss of -85.8 dB and an ultrathin thickness of 1.4 mm were achieved. Meanwhile, the high EMI shielding efficiency reached 110.1 dB. The excellent electromagnetic wave absorption and shielding performances were originated from the charge carriers, electric/magnetic dipole polarization, interfacial polarization, natural resonance, and multiple internal reflections. Moreover, a thin layer of polydimethylsiloxane rendered the hydrophilic hierarchical Ti3C2Tx/CNTs/Co hydrophobic, which can prevent the degradation/oxidation of the MXene in high humidity condition. Interestingly, the Ti3C2Tx/CNTs/Co film exhibited a remarkable photothermal conversion performance with high thermal cycle stability and tenability. Thus, the multifunctional Ti3C2Tx/CNTs/Co nanocomposites possessing a unique blend of outstanding electromagnetic wave absorption and EMI shielding, light-driven heating performance, and flexible water-resistant features were highly promising for the next-generation intelligent electromagnetic attenuation system.

151 citations

Journal ArticleDOI
01 Oct 2020-Small
TL;DR: It is found that the SiO2 layer can effectively counteract the inward shrinkage of organic frameworks during high-temperature pyrolysis due to intensive interfacial interaction.
Abstract: Carbon materials with multilevel structural features are showing great potentials in electromagnetic (EM) pollution precaution. With ZIF-67 microcubes as a self-sacrificing precursor, hierarchical carbon microcubes with micro/mesoporous shells and hollow cavities have been successfully fabricated with the assistance of rigid SiO2 coating layers. It is found that the SiO2 layer can effectively counteract the inward shrinkage of organic frameworks during high-temperature pyrolysis due to intensive interfacial interaction. The obtained hollow porous carbon microcubes (HPCMCs) exhibit larger Brunauer-Emmett-Teller surface area and pore volume than porous carbon microcubes (PCMCs) directly derived from ZIF-67 microcubes. The unique microstructure is confirmed to be favorable for conductive loss and interfacial polarization, thus boosting the overall dielectric loss capability of carbon materials. Besides, hollow cavity will also promote multiple reflection of incident EM waves and intensify the dissipation of EM energy. As expected, HPCMCs harvest better microwave absorption performance, including strong reflection loss intensity and broad response bandwidth, than many traditional microporous/mesoporous carbon materials. This study provides a new strategy for the construction of hierarchical carbon materials and may inspire the design of carbon-based composites with excellent EM functions.

140 citations

Journal ArticleDOI
TL;DR: In this paper, hollow transition metal oxides are synthesized in a solvothermal process to expand the propagation path of electromagnetic waves and the times of reflections and scattering, and the maximum reflection loss (RL) at 12.4 GHz was −56.0 dB and the wide effective absorption bandwidth (EAB) of 6.24 GHz was 6.6 dB.
Abstract: Transition metal oxides because of their excellent dielectric properties have been population for electromagnetic wave absorption application. In this paper, through two-step synthesis, hollow CoSnO3 was in-situ growth between layers of self-assembled flower-like ZnCo2O4 in the solvothermal process. The multi-layer sheet structure of ZnCo2O4 nanoflowers provides growth space for CoSnO3, which can increase interface polarization and natural resonance. Hybrid structure expands the propagation path of electromagnetic waves and the times of reflections and scattering. By adjusting the content of the growing process of CoSnO3, the maximum reflection loss (RL) at 12.4 GHz was −56.0 dB, and the wide effective absorption bandwidth (EAB) of 6.24 GHz (RL

128 citations

References
More filters
Journal ArticleDOI
TL;DR: In this paper, a model and theoretical understanding of the Raman spectra in disordered and amorphous carbon is given, and the nature of the G and D vibration modes in graphite is analyzed in terms of the resonant excitation of \ensuremath{\pi} states and the long-range polarizability of the long range bonding.
Abstract: The model and theoretical understanding of the Raman spectra in disordered and amorphous carbon are given. The nature of the G and D vibration modes in graphite is analyzed in terms of the resonant excitation of \ensuremath{\pi} states and the long-range polarizability of \ensuremath{\pi} bonding. Visible Raman data on disordered, amorphous, and diamondlike carbon are classified in a three-stage model to show the factors that control the position, intensity, and widths of the G and D peaks. It is shown that the visible Raman spectra depend formally on the configuration of the ${\mathrm{sp}}^{2}$ sites in ${\mathrm{sp}}^{2}$-bonded clusters. In cases where the ${\mathrm{sp}}^{2}$ clustering is controlled by the ${\mathrm{sp}}^{3}$ fraction, such as in as-deposited tetrahedral amorphous carbon (ta-C) or hydrogenated amorphous carbon (a-C:H) films, the visible Raman parameters can be used to derive the ${\mathrm{sp}}^{3}$ fraction.

12,593 citations

Journal ArticleDOI
01 Mar 2010-Carbon
TL;DR: In this paper, a dielectric spectroscopy of short carbon fiber/silica composite in the frequency range from 8.2 to 12.4 GHz at temperatures between 30 and 600°C has been performed.

1,540 citations

Journal ArticleDOI
TL;DR: The broadband and tunable high-performance microwave absorption properties of an ultralight and highly compressible graphene foam (GF) are investigated and it is shown that via physical compression, the microwave absorption performance can be tuned.
Abstract: The broadband and tunable high-performance microwave absorption properties of an ultralight and highly compressible graphene foam (GF) are investigated. Simply via physical compression, the microwave absorption performance can be tuned. The qualified bandwidth coverage of 93.8% (60.5 GHz/64.5 GHz) is achieved for the GF under 90% compressive strain (1.0 mm thickness). This mainly because of the 3D conductive network.

1,533 citations


"Solvent-Free Synthesis of Ultrafine..." refers background in this paper

  • ...In the past two decades, microwave absorption emerged as an advanced and sustainable alternative for the precaution of EM pollution, because this promising strategy was established on the fundamental energy conversion through the interaction between EM waves and microwave-absorbing materials (MAMs) [7, 8]....

    [...]

Journal ArticleDOI
TL;DR: For the first time, an efficient and facile approach is reported to fabricate freestanding, flexible, and hydrophobic MXene foam with reasonable strength by assembling MXene sheets into films followed by a hydrazine-induced foaming process.
Abstract: Ultrathin, lightweight, and flexible electromagnetic-interference (EMI) shielding materials are urgently required to manage increasingly serious radiation pollution. 2D transition-metal carbides (MXenes) are considered promising alternatives to graphene for providing excellent EMI-shielding performance due to their outstanding metallic electrical conductivity. However, the hydrophilicity of MXene films may affect their stability and reliability when applied in moist or wet environments. Herein, for the first time, an efficient and facile approach is reported to fabricate freestanding, flexible, and hydrophobic MXene foam with reasonable strength by assembling MXene sheets into films followed by a hydrazine-induced foaming process. In striking contrast to well-known hydrophilic MXene materials, the MXene foams surprisingly exhibit hydrophobic surfaces and outstanding water resistance and durability. More interestingly, a much enhanced EMI-shielding effectiveness of ≈70 dB is achieved for the lightweight MXene foam as compared to its unfoamed film counterpart (53 dB) due to the highly efficient wave attenuation in the favorable porous structure. Therefore, the hydrophobic, flexible, and lightweight MXene foam with an excellent EMI-shielding performance is highly promising for applications in aerospace and portable and wearable smart electronics.

1,241 citations

Journal ArticleDOI
TL;DR: By considering good chemical homogeneity and microwave absorption, it is believed the as-fabricated Fe3O4@C composites can be promising candidates as highly effective microwave absorbers.
Abstract: Core–shell composites, Fe3O4@C, with 500 nm Fe3O4 microspheres as cores have been successfully prepared through in situ polymerization of phenolic resin on the Fe3O4 surface and subsequent high-temperature carbonization. The thickness of carbon shell, from 20 to 70 nm, can be well controlled by modulating the weight ratio of resorcinol and Fe3O4 microspheres. Carbothermic reduction has not been triggered at present conditions, thus the crystalline phase and magnetic property of Fe3O4 micropsheres can be well preserved during the carbonization process. Although carbon shells display amorphous nature, Raman spectra reveal that the presence of Fe3O4 micropsheres can promote their graphitization degree to a certain extent. Coating Fe3O4 microspheres with carbon shells will not only increase the complex permittivity but also improve characteristic impedance, leading to multiple relaxation processes in these composites, thus the microwave absorption properties of these composites are greatly enhanced. Very inte...

817 citations