scispace - formally typeset
Search or ask a question
Proceedings ArticleDOI

Solving Problem of Electromagnetic Wave Diffraction by a Metal Plate Using CUDA

TL;DR: It is shown that the method of moments implementation by graphical processor provides a sufficient gain in the performance.
Abstract: In the present paper the problem of plane electromagnetic wave diffraction by a thin metal plate is considered. A numerical algorithm is developed using method of moments with NVIDIA CUDA technology implementation. The results of numerical modeling of a plane wave diffraction by the square thin metallic plate is shown. Comparative analysis of the performance for CPU and GPU is carried out. It is shown that the method of moments implementation by graphical processor provides a sufficient gain in the performance.
Citations
More filters
Journal ArticleDOI

[...]

08 Dec 2001-BMJ
TL;DR: There is, I think, something ethereal about i —the square root of minus one, which seems an odd beast at that time—an intruder hovering on the edge of reality.
Abstract: There is, I think, something ethereal about i —the square root of minus one. I remember first hearing about it at school. It seemed an odd beast at that time—an intruder hovering on the edge of reality. Usually familiarity dulls this sense of the bizarre, but in the case of i it was the reverse: over the years the sense of its surreal nature intensified. It seemed that it was impossible to write mathematics that described the real world in …

33,785 citations

Journal ArticleDOI
TL;DR: Numerical results are presented for the problem of diffraction by a rectangular screen, as well as by screen octagonal shape and the analysis shows that the method of moments implementation by GPU significantly improves the performance of the algorithm for solving theproblem of electromagnetic wave Diffraction by the flat metal screens.
Abstract: The problem of electromagnetic wave diffraction by a flat convex screen of arbitrary shape is considered. The numerical solution for the problem is obtained by the method of moments using the parallel programming technology CUDA. As basic and testing functions RWG functions are used. To construct the corresponding RWG elements on CUDA, a simple and fast algorithm of triangulation for a convex screen with an arbitrary boundary is developed. Numerical results are presented for the problem of diffraction by a rectangular screen, as well as by screen octagonal shape. The results obtained for the rectangle are in good correspondence with the results published in previous works. A comparative analysis of the running time of sequential and parallel algorithms is presented. The analysis shows that the method of moments implementation by GPU significantly improves the performance of the algorithm for solving the problem of electromagnetic wave diffraction by the flat metal screens.

2 citations

Journal ArticleDOI
TL;DR: In this paper, the problem of the electromagnetic wave diffraction by a rectangular perfectly conducting metal plate is considered and the solution of the problem is reduced to the integral equations for the tangential components of the magnetic intensity vector on the metal surface.
Abstract: The classical problem of the electromagnetic wave diffraction by a rectangular perfectly conducting metal plate is considered. The solution of the problem is reduced to the solving integral equations for the tangential components of the magnetic intensity vector on the metal surface. The collocation method is applied to the equation with the representation of the sought functions in the form of a series in the Chebyshev polynomials of the 1st and 2nd kind. Numerical experiments have been carried out for a different number of terms of the Fourier series of the sought functions and a different number of collocation points. Graphs comparing the results obtained for various parameters are presented. It is shown that an increase in the number of collocation points leads to a greater stability of the solution. It is concluded that there is no clear-cut convergence of the solution with this choice of collocation points.

1 citations

References
More filters
Journal ArticleDOI

[...]

08 Dec 2001-BMJ
TL;DR: There is, I think, something ethereal about i —the square root of minus one, which seems an odd beast at that time—an intruder hovering on the edge of reality.
Abstract: There is, I think, something ethereal about i —the square root of minus one. I remember first hearing about it at school. It seemed an odd beast at that time—an intruder hovering on the edge of reality. Usually familiarity dulls this sense of the bizarre, but in the case of i it was the reverse: over the years the sense of its surreal nature intensified. It seemed that it was impossible to write mathematics that described the real world in …

33,785 citations


"Solving Problem of Electromagnetic ..." refers methods in this paper

  • ...For their analysis, it is necessary to use strict analytical methods of applied electrodynamics [1]–[3] or approximate numerical methods [4]–[6]....

    [...]

Book
01 Jan 1982
TL;DR: The most up-to-date resource available on antenna theory and design as mentioned in this paper provides an extended coverage of ABET design procedures and equations making meeting ABET requirements easy and preparing readers for authentic situations in industry.
Abstract: The most-up-to-date resource available on antenna theory and design Expanded coverage of design procedures and equations makes meeting ABET design requirements easy and prepares readers for authentic situations in industry New coverage of microstrip antennas exposes readers to information vital to a wide variety of practical applicationsComputer programs at end of each chapter and the accompanying disk assist in problem solving, design projects and data plotting-- Includes updated material on moment methods, radar cross section, mutual impedances, aperture and horn antennas, and antenna measurements-- Outstanding 3-dimensional illustrations help readers visualize the entire antenna radiation pattern

14,065 citations

Book
31 May 1995
TL;DR: This paper presents background history of space-grid time-domain techniques for Maxwell's equations scaling to very large problem sizes defense applications dual-use electromagnetics technology, and the proposed three-dimensional Yee algorithm for solving these equations.
Abstract: Part 1 Reinventing electromagnetics: background history of space-grid time-domain techniques for Maxwell's equations scaling to very large problem sizes defense applications dual-use electromagnetics technology. Part 2 The one-dimensional scalar wave equation: propagating wave solutions finite-difference approximation of the scalar wave equation dispersion relations for the one-dimensional wave equation numerical group velocity numerical stability. Part 3 Introduction to Maxwell's equations and the Yee algorithm: Maxwell's equations in three dimensions reduction to two dimensions equivalence to the wave equation in one dimension. Part 4 Numerical stability: TM mode time eigenvalue problem space eigenvalue problem extension to the full three-dimensional Yee algorithm. Part 5 Numerical dispersion: comparison with the ideal dispersion case reduction to the ideal dispersion case for special grid conditions dispersion-optimized basic Yee algorithm dispersion-optimized Yee algorithm with fourth-order accurate spatial differences. Part 6 Incident wave source conditions for free space and waveguides: requirements for the plane wave source condition the hard source total-field/scattered field formulation pure scattered field formulation choice of incident plane wave formulation. Part 7 Absorbing boundary conditions for free space and waveguides: Bayliss-Turkel scattered-wave annihilating operators Engquist-Majda one-way wave equations Higdon operator Liao extrapolation Mei-Fang superabsorption Berenger perfectly-matched layer (PML) absorbing boundary conditions for waveguides. Part 8 Near-to-far field transformation: obtaining phasor quantities via discrete fourier transformation surface equivalence theorem extension to three dimensions phasor domain. Part 9 Dispersive, nonlinear, and gain materials: linear isotropic case recursive convolution method linear gyrontropic case linear isotropic case auxiliary differential equation method, Lorentz gain media. Part 10 Local subcell models of the fine geometrical features: basis of contour-path FD-TD modelling the simplest contour-path subcell models the thin wire conformal modelling of curved surfaces the thin material sheet relativistic motion of PEC boundaries. Part 11 Explicit time-domain solution of Maxwell's equations using non-orthogonal and unstructured grids, Stephen Gedney and Faiza Lansing: nonuniform, orthogonal grids globally orthogonal global curvilinear co-ordinates irregular non-orthogonal unstructured grids analysis of printed circuit devices using the planar generalized Yee algorithm. Part 12 The body of revolution FD-TD algorithm, Thomas Jurgens and Gregory Saewert: field expansion difference equations for on-axis cells numerical stability PML absorbing boundary condition. Part 13 Modelling of electromagnetic fields in high-speed electronic circuits, Piket-May and Taflove. (part contents).

11,194 citations


"Solving Problem of Electromagnetic ..." refers methods in this paper

  • ...To date, the following methods are widely used in specialized software: the moment method (MoM), the finite element method (FEM) [7], and the finite difference method in the time domain (FDTD) [8]....

    [...]

Book
01 Jan 1968
TL;DR: This first book to explore the computation of electromagnetic fields by the most popular method for the numerical solution to electromagnetic field problems presents a unified approach to moment methods by employing the concepts of linear spaces and functional analysis.
Abstract: From the Publisher: "An IEEE reprinting of this classic 1968 edition, FIELD COMPUTATION BY MOMENT METHODS is the first book to explore the computation of electromagnetic fields by the most popular method for the numerical solution to electromagnetic field problems. It presents a unified approach to moment methods by employing the concepts of linear spaces and functional analysis. Written especially for those who have a minimal amount of experience in electromagnetic theory, this book illustrates theoretical and mathematical concepts to prepare all readers with the skills they need to apply the method of moments to new, engineering-related problems.Written especially for those who have a minimal amount of experience in electromagnetic theory, theoretical and mathematical concepts are illustrated by examples that prepare all readers with the skills they need to apply the method of moments to new, engineering-related problems."

6,593 citations


"Solving Problem of Electromagnetic ..." refers methods in this paper

  • ...Harrington and his monograph ”Field Computation by Moment Methods” described the method of moments most fully [15]; the current state of the method of moments in electrodynamics problems is described in the monographs by Sadiku [16] and Gibson [14]....

    [...]

  • ...THE METHOD OF MOMENTS The method of moments (see [14], [15]) is one of the most common numerical methods of electrodynamics, used to calculate surface currents on plane metal or dielectric structures when emitted in free space....

    [...]

Journal ArticleDOI
01 Jul 1984

5,335 citations


"Solving Problem of Electromagnetic ..." refers background in this paper

  • ...One approach to solving problem (1)-(7) is to reduce it to an integro-differential equation on a plate [13]....

    [...]

  • ...As is known [13], [14], the problem of diffraction of electromagnetic waves on a perfectly conducting surface can be described by the operator equation for the surface current....

    [...]