scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Some measures for making halogen bonds stronger than hydrogen bonds in H2CS-HOX (X = F, Cl, and Br) complexes.

27 Jan 2011-Physical Chemistry Chemical Physics (The Royal Society of Chemistry)-Vol. 13, Iss: 6, pp 2266-2271
TL;DR: This paper suggested some measures for enhancing the strength of the halogen bond relative to the hydrogen bond in the H(2)CS-HOX (X = F, Cl, and Br) system by means of quantum chemical calculations.
Abstract: The properties and applications of halogen bonds are dependent greatly on their strength. In this paper, we suggested some measures for enhancing the strength of the halogen bond relative to the hydrogen bond in the H2CS–HOX (X = F, Cl, and Br) system by means of quantum chemical calculations. It has been shown that with comparison to H2CO, the S electron donor in H2CS results in a smaller difference in strength for the Cl halogen bond and the corresponding hydrogen bond, and the Br halogen bond is even stronger than the hydrogen bond. The Li atom in LiHCS and methyl group in MeHCS cause an increase in the strength of halogen bonding and hydrogen bonding, but the former makes the halogen bond stronger and the latter makes the hydrogen bond stronger. In solvents, the halogen bond in the Br system is strong enough to compete with the hydrogen bond. The interaction nature and properties in these complexes have been analyzed with the natural bond orbital theory.
Citations
More filters
Journal ArticleDOI
TL;DR: An extensive survey of wave function and DFT methods to test their accuracy on geometries and dissociation energies of halogen bonds (XB) found that functionals with high exact exchange or long-range corrections were suitable for these dimers, especially M06-2X, ωB97XD, and double hybrids.
Abstract: We carried out an extensive survey of wave function and DFT methods to test their accuracy on geometries and dissociation energies of halogen bonds (XB). For that purpose, we built two benchmark sets (XB18 and XB51). Between the DFT methods, it was found that functionals with high exact exchange or long-range corrections were suitable for these dimers, especially M06-2X, ωB97XD, and double hybrids. Dispersion corrections tend to be detrimental, in spite of the fact that XB is considered a noncovalent interaction. Wave function techniques require heavy correlated methods (i.e., CCSD(T)) or parametrized ones (SCS-MP2 or SCS(MI)MP2). Heavy basis sets are needed to obtain high accuracy, such as aVQZ or aVTZ+CP, and ideally a CBS extrapolation. Relativistic ECPs are also important, even for the bromine based dimers. In addition, we explored some XB with new theoretical tools, the NCI (“Non-Covalent Interactions”) method and the NOFF (“Natural Orbital Fukui Functions”).

416 citations

Journal ArticleDOI
TL;DR: This tutorial review presents an overview of the methods hitherto applied for gaining an improved understanding of halogen bonding behaviour in solutions and summarizes the gained knowledge in order to indicate the scope of the techniques and to facilitate exciting future developments.
Abstract: Halogen bonding is the electron density donation based weak interaction of halogens with Lewis bases Its applicability for molecular recognition processes long remained unappreciated and has so far mostly been studied in silico and in solid state As most physiological processes and chemical reactions take place in solution, investigations in solutions are of highest relevance for its use in the pharmaceutical and material scientific toolboxes Following a short discussion of the phenomenon of halogen bonding, this tutorial review presents an overview of the methods hitherto applied for gaining an improved understanding of its behaviour in solutions and summarizes the gained knowledge in order to indicate the scope of the techniques and to facilitate exciting future developments

415 citations

Journal ArticleDOI
TL;DR: The nominally weaker CH···O are surprisingly strong, comparable to, and in some cases stronger than, the NH··O H-bonds in the context of the forces that hold together the adjacent strands in protein β-sheets.
Abstract: Whereas CH⋯O H-bonds are usually weaker than interpeptide NH⋯O H-bonds, this is not necessarily the case within proteins. The nominally weaker CH⋯O are surprisingly strong, comparable to, and in some cases stronger than, the NH⋯O H-bonds in the context of the forces that hold together the adjacent strands in protein β-sheets. The peptide NH is greatly weakened as proton donor in certain conformations of the protein backbone, particularly extended structures, and forms correspondingly weaker H-bonds. The PH group is a weak proton donor, but will form PH⋯N H-bonds. However, there is a stronger interaction in which P can engage, in which the P atom, not the H, directly approaches the N electron donor to establish a direct P⋯N interaction. This approach is stabilized by the same sort of electron transfer from the N lone pair to the P–H σ* antibond that characterizes the PH⋯N H-bond.

158 citations

Journal ArticleDOI
TL;DR: In this article, the authors demonstrate that control of the competition between hydrogen bonds and halogen bonds, the two most highly studied directional intermolecular interactions, can be exerted by choice of solvent (polarity) to direct the selfassembly of co-crystals.
Abstract: Control of intermolecular interactions is integral to harnessing self-assembly in nature. Here we demonstrate that control of the competition between hydrogen bonds and halogen bonds, the two most highly studied directional intermolecular interactions, can be exerted by choice of solvent (polarity) to direct the self-assembly of co-crystals. Competitive co-crystal formation has been investigated for three pairs of hydrogen bond and halogen bond donors, which can compete for a common acceptor group. These competitions have been examined in seven different solvents. Product formation has been determined and phase purity has been examined by analysis of powder X-ray diffraction patterns. Formation of hydrogen-bonded co-crystals is favoured from less polar solvents and halogen-bonded co-crystals from more polar solvents. The solvent polarity at which the crystal formation switches from hydrogen-bond to halogen-bond dominance depends on the relative strengths of the interactions, but is not a function of the solution-phase interactions alone. The results clearly establish that an appreciation of solvent effects is critical to obtain control of the intermolecular interactions.

150 citations

Journal ArticleDOI
TL;DR: In this article, the structure and properties of complexes and crystals with halogen bonding accompanied by different secondary non-covalent interactions are summarized and modern methods and approaches used to provide clear and reproducible estimates of the strength of halogen bonds are analyzed.
Abstract: Studies on the structure and properties of complexes and crystals with halogen bonding accompanied by different secondary non-covalent interactions are summarized. The signs of halogen bonding are systematized and modern methods and approaches used to provide clear and reproducible estimates of the strength of halogen bonds are analyzed. The halogen bond strength values are compared with the strength of the other non-covalent interactions. The contradictions in the interpretation of the results from different studies of the strength of halogen bond are discussed. The bibliography includes 249 references.

146 citations

References
More filters
Journal ArticleDOI
TL;DR: In this paper, a direct difference method for the computation of molecular interactions has been based on a bivariational transcorrelated treatment, together with special methods for the balancing of other errors.
Abstract: A new direct difference method for the computation of molecular interactions has been based on a bivariational transcorrelated treatment, together with special methods for the balancing of other errors. It appears that these new features can give a strong reduction in the error of the interaction energy, and they seem to be particularly suitable for computations in the important region near the minimum energy. It has been generally accepted that this problem is dominated by unresolved difficulties and the relation of the new methods to these apparent difficulties is analysed here.

19,483 citations

Journal ArticleDOI
TL;DR: This review focuses mainly on examples with biological relevance since one of its aims it to enhance the knowledge of molecular recognition forces that is essential for drug development.
Abstract: Intermolecular interactions involving aromatic rings are key processes in both chemical and biological recognition. Their understanding is essential for rational drug design and lead optimization in medicinal chemistry. Different approaches—biological studies, molecular recognition studies with artificial receptors, crystallographic database mining, gas-phase studies, and theoretical calculations—are pursued to generate a profound understanding of the structural and energetic parameters of individual recognition modes involving aromatic rings. This review attempts to combine and summarize the knowledge gained from these investigations. The review focuses mainly on examples with biological relevance since one of its aims it to enhance the knowledge of molecular recognition forces that is essential for drug development.

3,053 citations

Journal ArticleDOI
TL;DR: A computer-accessible catalog of submillimeter, millimeter, and microwave spectral lines in the frequency range between 0 and 10 000 GHz (i.e. wavelengths longer than 30 μm) that has been constructed by using theoretical least-squares fits of published spectral lines to accepted molecular models.
Abstract: This paper describes a computer-accessible catalog of submillimeter, millimeter, and microwave spectral lines in the frequency range between 0 and 10 000 GHz (i.e. wavelengths longer than 30 μm). The catalog can be used as a planning guide or as an aid in the identification and analysis of observed spectral lines in the interstellar medium, the Earth’s atmosphere, and the atmospheres of other planets. The information listed for each spectral line includes the frequency and its estimated error, the intensity, the lower state energy, and the quantum number assignment. The catalog is continuously updated and at present has information on 331 atomic and molecular species and includes a total of 1 845 866 lines. The catalog has been constructed by using theoretical least-squares fits of published spectral lines to accepted molecular models. The associated predictions and their estimated errors are based upon the resultant fitted parameters and their covariance. Future versions of this catalog will add more atoms and molecules and update the present listings as new data appear. The catalog is available on-line via anonymous FTP at spec.jpl.nasa.gov and on the world wide web at http: //spec.jpl.nasa.gov.

2,098 citations

Journal ArticleDOI
TL;DR: In this paper, the authors carried out a natural bond order B3LYP analysis of the molecules CF(3)X, with X = F, Cl, Br and I. The results showed that the Cl and Br atoms in these molecules closely approximate the [Formula: see text] configuration, where the z-axis is along the R-X bond.
Abstract: Halogen bonding refers to the non-covalent interactions of halogen atoms X in some molecules, RX, with negative sites on others. It can be explained by the presence of a region of positive electrostatic potential, the sigma-hole, on the outermost portion of the halogen's surface, centered on the R-X axis. We have carried out a natural bond order B3LYP analysis of the molecules CF(3)X, with X = F, Cl, Br and I. It shows that the Cl, Br and I atoms in these molecules closely approximate the [Formula: see text] configuration, where the z-axis is along the R-X bond. The three unshared pairs of electrons produce a belt of negative electrostatic potential around the central part of X, leaving the outermost region positive, the sigma-hole. This is not found in the case of fluorine, for which the combination of its high electronegativity plus significant sp-hybridization causes an influx of electronic charge that neutralizes the sigma-hole. These factors become progressively less important in proceeding to Cl, Br and I, and their effects are also counteracted by the presence of electron-withdrawing substituents in the remainder of the molecule. Thus a sigma-hole is observed for the Cl in CF(3)Cl, but not in CH(3)Cl.

1,893 citations

Journal ArticleDOI
TL;DR: The aim of this article is to highlight some features common to all hydrogen bonds and further to suggest that the term hydrogen bridge is perhaps a better descriptor for them.
Abstract: A hydrogen bond, X-H...A, is an interaction wherein a hydrogen atom is attracted to two atoms, X and A, rather than just one and so acts like a bridge between them. This attraction always increases with increasing electronegativity of X and A, and in the classical view all hydrogen bonds are highly electrostatic and sometimes even partly covalent. Gradually, the concept of a hydrogen bond became more relaxed to include weaker interactions, provided some electrostatic character remains. In the limit, these weak hydrogen bonds have considerable dispersive-repulsive character and merge into van der Waals interactions. A great variety of hydrogen bonds are observed in the solid state and the aim of this article is to highlight some features common to all these bonds and further to suggest that the term hydrogen bridge is perhaps a better descriptor for them. Such a description recognizes an interaction without borders and one that admits of much variation in its relative covalent, electrostatic, and van der Waals content.

1,850 citations