scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Space-Air-Ground Integrated Network: A Survey

TL;DR: This paper is the first to present the state-of-the-art of the SAGIN since existing survey papers focused on either only one single network segment in space or air, or the integration of space-ground, neglecting the Integration of all the three network segments.
Abstract: Space-air-ground integrated network (SAGIN), as an integration of satellite systems, aerial networks, and terrestrial communications, has been becoming an emerging architecture and attracted intensive research interest during the past years. Besides bringing significant benefits for various practical services and applications, SAGIN is also facing many unprecedented challenges due to its specific characteristics, such as heterogeneity, self-organization, and time-variability. Compared to traditional ground or satellite networks, SAGIN is affected by the limited and unbalanced network resources in all three network segments, so that it is difficult to obtain the best performances for traffic delivery. Therefore, the system integration, protocol optimization, resource management, and allocation in SAGIN is of great significance. To the best of our knowledge, we are the first to present the state-of-the-art of the SAGIN since existing survey papers focused on either only one single network segment in space or air, or the integration of space-ground, neglecting the integration of all the three network segments. In light of this, we present in this paper a comprehensive review of recent research works concerning SAGIN from network design and resource allocation to performance analysis and optimization. After discussing several existing network architectures, we also point out some technology challenges and future directions.
Citations
More filters
Journal ArticleDOI
TL;DR: This article presents a large-dimensional and autonomous network architecture that integrates space, air, ground, and underwater networks to provide ubiquitous and unlimited wireless connectivity and identifies several promising technologies for the 6G ecosystem.
Abstract: A key enabler for the intelligent information society of 2030, 6G networks are expected to provide performance superior to 5G and satisfy emerging services and applications. In this article, we present our vision of what 6G will be and describe usage scenarios and requirements for multi-terabyte per second (Tb/s) and intelligent 6G networks. We present a large-dimensional and autonomous network architecture that integrates space, air, ground, and underwater networks to provide ubiquitous and unlimited wireless connectivity. We also discuss artificial intelligence (AI) and machine learning [1], [2] for autonomous networks and innovative air-interface design. Finally, we identify several promising technologies for the 6G ecosystem, including terahertz (THz) communications, very-large-scale antenna arrays [i.e., supermassive (SM) multiple-input, multiple-output (MIMO)], large intelligent surfaces (LISs) and holographic beamforming (HBF), orbital angular momentum (OAM) multiplexing, laser and visible-light communications (VLC), blockchain-based spectrum sharing, quantum communications and computing, molecular communications, and the Internet of Nano-Things.

1,332 citations


Cites background from "Space-Air-Ground Integrated Network..."

  • ...■ Space-network tier: This will support orbit or space Internet services in such applications as space travel and provide wireless coverage by densely deploying low-Earth-orbit, medium-Earth-orbit, and geostationary-Earth-orbit satellites [7] for unserved and underserved areas not covered by terrestrial networks....

    [...]

  • ...■ Air-network tier: This works in the low-frequency, microwave, and mm-wave bands to provide more flexible and reliable connectivity for urgent events or in remote mountain areas by densely employing flying base stations (BSs), such as unmanned aerial vehicles (UAVs) [7], and floating BSs, such as highaltitude platforms....

    [...]

Journal ArticleDOI
TL;DR: 6G with additional technical requirements beyond those of 5G will enable faster and further communications to the extent that the boundary between physical and cyber worlds disappears.
Abstract: The fifth generation (5G) wireless communication networks are being deployed worldwide from 2020 and more capabilities are in the process of being standardized, such as mass connectivity, ultra-reliability, and guaranteed low latency. However, 5G will not meet all requirements of the future in 2030 and beyond, and sixth generation (6G) wireless communication networks are expected to provide global coverage, enhanced spectral/energy/cost efficiency, better intelligence level and security, etc. To meet these requirements, 6G networks will rely on new enabling technologies, i.e., air interface and transmission technologies and novel network architecture, such as waveform design, multiple access, channel coding schemes, multi-antenna technologies, network slicing, cell-free architecture, and cloud/fog/edge computing. Our vision on 6G is that it will have four new paradigm shifts. First, to satisfy the requirement of global coverage, 6G will not be limited to terrestrial communication networks, which will need to be complemented with non-terrestrial networks such as satellite and unmanned aerial vehicle (UAV) communication networks, thus achieving a space-air-ground-sea integrated communication network. Second, all spectra will be fully explored to further increase data rates and connection density, including the sub-6 GHz, millimeter wave (mmWave), terahertz (THz), and optical frequency bands. Third, facing the big datasets generated by the use of extremely heterogeneous networks, diverse communication scenarios, large numbers of antennas, wide bandwidths, and new service requirements, 6G networks will enable a new range of smart applications with the aid of artificial intelligence (AI) and big data technologies. Fourth, network security will have to be strengthened when developing 6G networks. This article provides a comprehensive survey of recent advances and future trends in these four aspects. Clearly, 6G with additional technical requirements beyond those of 5G will enable faster and further communications to the extent that the boundary between physical and cyber worlds disappears.

935 citations

Journal ArticleDOI
TL;DR: A comprehensive survey on UAV communication toward 5G/B5G wireless networks is presented and an exhaustive review of various 5G techniques based on Uav platforms is provided, which are categorize by different domains, including physical layer, network layer, and joint communication, computing, and caching.
Abstract: Providing ubiquitous connectivity to diverse device types is the key challenge for 5G and beyond 5G (B5G). Unmanned aerial vehicles (UAVs) are expected to be an important component of the upcoming wireless networks that can potentially facilitate wireless broadcast and support high rate transmissions. Compared to the communications with fixed infrastructure, UAV has salient attributes, such as flexible deployment, strong line-of-sight connection links, and additional design degrees of freedom with the controlled mobility. In this paper, a comprehensive survey on UAV communication toward 5G/B5G wireless networks is presented. We first briefly introduce essential background and the space–air–ground integrated networks, as well as discuss related research challenges faced by the emerging integrated network architecture. We then provide an exhaustive review of various 5G techniques based on UAV platforms, which we categorize by different domains, including physical layer, network layer, and joint communication, computing, and caching. In addition, a great number of open research problems are outlined and identified as possible future research directions.

624 citations


Cites background from "Space-Air-Ground Integrated Network..."

  • ...It is compelling to use higher frequency band for providing low-latency and high-throughput services, such as C-band and Ka-band [30]....

    [...]

  • ...On the other hand, a satellite system is limited in power and bandwidth suffering from large transmission delay, and the satellite-to-ground channel fading at high frequencies (typically Ka-band) is much more severe, which seemingly blocks it from practical usage....

    [...]

  • ...It is worth noting that the satellite-to-UAV channel mainly relies on the LoS link and also suffers from the rain attenuation significantly when using the Ka-band and above....

    [...]

Journal ArticleDOI
TL;DR: A comprehensive survey on UAV communication towards 5G/B5G wireless networks is presented in this article, where UAVs are expected to be an important component of the upcoming wireless networks that can potentially facilitate wireless broadcast and support high rate transmissions.
Abstract: Providing ubiquitous connectivity to diverse device types is the key challenge for 5G and beyond 5G (B5G). Unmanned aerial vehicles (UAVs) are expected to be an important component of the upcoming wireless networks that can potentially facilitate wireless broadcast and support high rate transmissions. Compared to the communications with fixed infrastructure, UAV has salient attributes, such as flexible deployment, strong line-of-sight (LoS) connection links, and additional design degrees of freedom with the controlled mobility. In this paper, a comprehensive survey on UAV communication towards 5G/B5G wireless networks is presented. We first briefly introduce essential background and the space-air-ground integrated networks, as well as discuss related research challenges faced by the emerging integrated network architecture. We then provide an exhaustive review of various 5G techniques based on UAV platforms, which we categorize by different domains including physical layer, network layer, and joint communication, computing and caching. In addition, a great number of open research problems are outlined and identified as possible future research directions.

566 citations

Journal ArticleDOI
TL;DR: Simulation results show that the proposed edge VM allocation and task scheduling approach can achieve near-optimal performance with very low complexity and the proposed learning-based computing offloading algorithm not only converges fast but also achieves a lower total cost compared with other offloading approaches.
Abstract: Internet of Things (IoT) computing offloading is a challenging issue, especially in remote areas where common edge/cloud infrastructure is unavailable. In this paper, we present a space-air-ground integrated network (SAGIN) edge/cloud computing architecture for offloading the computation-intensive applications considering remote energy and computation constraints, where flying unmanned aerial vehicles (UAVs) provide near-user edge computing and satellites provide access to the cloud computing. First, for UAV edge servers, we propose a joint resource allocation and task scheduling approach to efficiently allocate the computing resources to virtual machines (VMs) and schedule the offloaded tasks. Second, we investigate the computing offloading problem in SAGIN and propose a learning-based approach to learn the optimal offloading policy from the dynamic SAGIN environments. Specifically, we formulate the offloading decision making as a Markov decision process where the system state considers the network dynamics. To cope with the system dynamics and complexity, we propose a deep reinforcement learning-based computing offloading approach to learn the optimal offloading policy on-the-fly, where we adopt the policy gradient method to handle the large action space and actor-critic method to accelerate the learning process. Simulation results show that the proposed edge VM allocation and task scheduling approach can achieve near-optimal performance with very low complexity and the proposed learning-based computing offloading algorithm not only converges fast but also achieves a lower total cost compared with other offloading approaches.

537 citations


Cites background from "Space-Air-Ground Integrated Network..."

  • ...with the terrestrial network to provide seamless and flexible network coverage and services to large areas, and thus can be applied in many promising fields, such as intelligent transportation system, remote area monitoring, disaster rescue, and large-scale high-speed mobile Internet access [13]....

    [...]

References
More filters
Journal ArticleDOI
TL;DR: This work reveals that it is in general not optimal to regard the information to be multicast as a "fluid" which can simply be routed or replicated, and by employing coding at the nodes, which the work refers to as network coding, bandwidth can in general be saved.
Abstract: We introduce a new class of problems called network information flow which is inspired by computer network applications. Consider a point-to-point communication network on which a number of information sources are to be multicast to certain sets of destinations. We assume that the information sources are mutually independent. The problem is to characterize the admissible coding rate region. This model subsumes all previously studied models along the same line. We study the problem with one information source, and we have obtained a simple characterization of the admissible coding rate region. Our result can be regarded as the max-flow min-cut theorem for network information flow. Contrary to one's intuition, our work reveals that it is in general not optimal to regard the information to be multicast as a "fluid" which can simply be routed or replicated. Rather, by employing coding at the nodes, which we refer to as network coding, bandwidth can in general be saved. This finding may have significant impact on future design of switching systems.

8,533 citations


"Space-Air-Ground Integrated Network..." refers methods in this paper

  • ...ature, the method most commonly used to analyze and improve network throughout is network coding (NC), which was first proposed in [115]....

    [...]

Journal ArticleDOI
TL;DR: An overview of UAV-aided wireless communications is provided, by introducing the basic networking architecture and main channel characteristics, highlighting the key design considerations as well as the new opportunities to be exploited.
Abstract: Wireless communication systems that include unmanned aerial vehicles promise to provide cost-effective wireless connectivity for devices without infrastructure coverage. Compared to terrestrial communications or those based on high-altitude platforms, on-demand wireless systems with low-altitude UAVs are in general faster to deploy, more flexibly reconfigured, and likely to have better communication channels due to the presence of short-range line-of-sight links. However, the utilization of highly mobile and energy-constrained UAVs for wireless communications also introduces many new challenges. In this article, we provide an overview of UAV-aided wireless communications, by introducing the basic networking architecture and main channel characteristics, highlighting the key design considerations as well as the new opportunities to be exploited.

3,145 citations


"Space-Air-Ground Integrated Network..." refers background in this paper

  • ...[64] discussed two key techniques for wireless communications with UAV controlled mobility, i....

    [...]

Journal ArticleDOI
TL;DR: The SDN architecture and the OpenFlow standard in particular are presented, current alternatives for implementation and testing of SDN-based protocols and services are discussed, current and future SDN applications are examined, and promising research directions based on the SDN paradigm are explored.
Abstract: The idea of programmable networks has recently re-gained considerable momentum due to the emergence of the Software-Defined Networking (SDN) paradigm. SDN, often referred to as a ''radical new idea in networking'', promises to dramatically simplify network management and enable innovation through network programmability. This paper surveys the state-of-the-art in programmable networks with an emphasis on SDN. We provide a historic perspective of programmable networks from early ideas to recent developments. Then we present the SDN architecture and the OpenFlow standard in particular, discuss current alternatives for implementation and testing of SDN-based protocols and services, examine current and future SDN applications, and explore promising research directions based on the SDN paradigm.

2,013 citations


"Space-Air-Ground Integrated Network..." refers methods in this paper

  • ...Leveraging the concepts of software and virtualization, SDN [157] and Network Function Virtualization (NFV) [158] are redefining the network architecture to support...

    [...]

01 Oct 1989
TL;DR: This RFC is an official specification for the Internet community that incorporates by reference, amends, corrects, and supplements the primary protocol standards documents relating to hosts.
Abstract: This RFC is an official specification for the Internet community It incorporates by reference, amends, corrects, and supplements the primary protocol standards documents relating to hosts [STANDARDS- TRACK]

1,675 citations

Journal ArticleDOI
TL;DR: This paper surveys the work done toward all of the outstanding issues, relating to this new class of networks, so as to spur further research in these areas.
Abstract: Unmanned aerial vehicles (UAVs) have enormous potential in the public and civil domains. These are particularly useful in applications, where human lives would otherwise be endangered. Multi-UAV systems can collaboratively complete missions more efficiently and economically as compared to single UAV systems. However, there are many issues to be resolved before effective use of UAVs can be made to provide stable and reliable context-specific networks. Much of the work carried out in the areas of mobile ad hoc networks (MANETs), and vehicular ad hoc networks (VANETs) does not address the unique characteristics of the UAV networks. UAV networks may vary from slow dynamic to dynamic and have intermittent links and fluid topology. While it is believed that ad hoc mesh network would be most suitable for UAV networks yet the architecture of multi-UAV networks has been an understudied area. Software defined networking (SDN) could facilitate flexible deployment and management of new services and help reduce cost, increase security and availability in networks. Routing demands of UAV networks go beyond the needs of MANETS and VANETS. Protocols are required that would adapt to high mobility, dynamic topology, intermittent links, power constraints, and changing link quality. UAVs may fail and the network may get partitioned making delay and disruption tolerance an important design consideration. Limited life of the node and dynamicity of the network lead to the requirement of seamless handovers, where researchers are looking at the work done in the areas of MANETs and VANETs, but the jury is still out. As energy supply on UAVs is limited, protocols in various layers should contribute toward greening of the network. This paper surveys the work done toward all of these outstanding issues, relating to this new class of networks, so as to spur further research in these areas.

1,636 citations


"Space-Air-Ground Integrated Network..." refers background in this paper

  • ...[12] surveyed some important issues about high mobility, dynamic topology, intermittent links, energy constraints, and changing...

    [...]

  • ...A detailed survey on the types of handover and existing handover schemes in UAV networks had been given in [12]....

    [...]