scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Space-Time Approach to Non-Relativistic Quantum Mechanics

01 Apr 1948-Reviews of Modern Physics (American Physical Society)-Vol. 20, Iss: 2, pp 367-387
TL;DR: In this paper, the authors formulated non-relativistic quantum mechanics in a different way and showed that the probability of an event which can happen in several different ways is the absolute square of a sum of complex contributions, one from each alternative way.
Abstract: Non-relativistic quantum mechanics is formulated here in a different way. It is, however, mathematically equivalent to the familiar formulation. In quantum mechanics the probability of an event which can happen in several different ways is the absolute square of a sum of complex contributions, one from each alternative way. The probability that a particle will be found to have a path x(t) lying somewhere within a region of space time is the square of a sum of contributions, one from each path in the region. The contribution from a single path is postulated to be an exponential whose (imaginary) phase is the classical action (in units of ℏ) for the path in question. The total contribution from all paths reaching x, t from the past is the wave function ψ(x, t). This is shown to satisfy Schroedinger's equation. The relation to matrix and operator algebra is discussed. Applications are indicated, in particular to eliminate the coordinates of the field oscillators from the equations of quantum electrodynamics.

Content maybe subject to copyright    Report

Citations
More filters
Journal ArticleDOI
TL;DR: In this paper, the authors describe the possibility of simulating physics in the classical approximation, a thing which is usually described by local differential equations, and the possibility that there is to be an exact simulation, that the computer will do exactly the same as nature.
Abstract: This chapter describes the possibility of simulating physics in the classical approximation, a thing which is usually described by local differential equations. But the physical world is quantum mechanical, and therefore the proper problem is the simulation of quantum physics. A computer which will give the same probabilities as the quantum system does. The present theory of physics allows space to go down into infinitesimal distances, wavelengths to get infinitely great, terms to be summed in infinite order, and so forth; and therefore, if this proposition is right, physical law is wrong. Quantum theory and quantizing is a very specific type of theory. The chapter talks about the possibility that there is to be an exact simulation, that the computer will do exactly the same as nature. There are interesting philosophical questions about reasoning, and relationship, observation, and measurement and so on, which computers have stimulated people to think about anew, with new types of thinking.

7,202 citations

Book
01 Jan 1997
TL;DR: In this article, the authors discuss the relationship between Markov Processes and Ergodic properties of Markov processes and their relation with PDEs and potential theory. But their main focus is on the convergence of random processes, measures, and sets.
Abstract: * Measure Theory-Basic Notions * Measure Theory-Key Results * Processes, Distributions, and Independence * Random Sequences, Series, and Averages * Characteristic Functions and Classical Limit Theorems * Conditioning and Disintegration * Martingales and Optional Times * Markov Processes and Discrete-Time Chains * Random Walks and Renewal Theory * Stationary Processes and Ergodic Theory * Special Notions of Symmetry and Invariance * Poisson and Pure Jump-Type Markov Processes * Gaussian Processes and Brownian Motion * Skorohod Embedding and Invariance Principles * Independent Increments and Infinite Divisibility * Convergence of Random Processes, Measures, and Sets * Stochastic Integrals and Quadratic Variation * Continuous Martingales and Brownian Motion * Feller Processes and Semigroups * Ergodic Properties of Markov Processes * Stochastic Differential Equations and Martingale Problems * Local Time, Excursions, and Additive Functionals * One-Dimensional SDEs and Diffusions * Connections with PDEs and Potential Theory * Predictability, Compensation, and Excessive Functions * Semimartingales and General Stochastic Integration * Large Deviations * Appendix 1: Advanced Measure Theory * Appendix 2: Some Special Spaces * Historical and Bibliographical Notes * Bibliography * Indices

4,562 citations

Journal ArticleDOI
TL;DR: In this paper, the modern formulation of the renormalization group is explained for both critical phenomena in classical statistical mechanics and quantum field theory, and the expansion in ϵ = 4−d is explained [ d is the dimension of space (statistical mechanics) or space-time (quantum field theory)].

3,882 citations

Book
01 Jan 2004
TL;DR: In this paper, the authors present a general theory of Levy processes and a stochastic calculus for Levy processes in a direct and accessible way, including necessary and sufficient conditions for Levy process to have finite moments.
Abstract: Levy processes form a wide and rich class of random process, and have many applications ranging from physics to finance Stochastic calculus is the mathematics of systems interacting with random noise Here, the author ties these two subjects together, beginning with an introduction to the general theory of Levy processes, then leading on to develop the stochastic calculus for Levy processes in a direct and accessible way This fully revised edition now features a number of new topics These include: regular variation and subexponential distributions; necessary and sufficient conditions for Levy processes to have finite moments; characterisation of Levy processes with finite variation; Kunita's estimates for moments of Levy type stochastic integrals; new proofs of Ito representation and martingale representation theorems for general Levy processes; multiple Wiener-Levy integrals and chaos decomposition; an introduction to Malliavin calculus; an introduction to stability theory for Levy-driven SDEs

2,908 citations

Journal ArticleDOI
01 Jan 1949
TL;DR: In this article, an attempt is made to interpret quantum mechanics as a statistical theory, or more exactly as a form of non-deterministic statistical dynamics, which may hence be considered as an interpretation of quantum kinematics.
Abstract: An attempt is made to interpret quantum mechanics as a statistical theory, or more exactly as a form of non-deterministic statistical dynamics. The paper falls into three parts. In the first, the distribution functions of the complete set of dynamical variables specifying a mechanical system (phase-space distributions), which are fundamental in any form of statistical dynamics, are expressed in terms of the wave vectors of quantum theory. This is shown to be equivalent to specifying a theory of functions of non-commuting operators, and may hence be considered as an interpretation of quantum kinematics. In the second part, the laws governing the transformation with time of these phase-space distributions are derived from the equations of motion of quantum dynamics and found to be of the required form for a dynamical stochastic process. It is shown that these phase-space transformation equations can be used as an alternative to the Schrodinger equation in the solution of quantum mechanical problems, such as the evolution with time of wave packets, collision problems and the calculation of transition probabilities in perturbed systems; an approximation method is derived for this purpose. The third part, quantum statistics, deals with the phase-space distribution of members of large assemblies, with a view to applications of quantum mechanics to kinetic theories of matter. Finally, the limitations of the theory, its uniqueness and the possibilities of experimental verification are discussed.

2,905 citations