scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Sparse Sampling of Signal Innovations

TL;DR: It is shown that sampling at the rate of innovation is possible, in some sense applying Occam's razor to the sampling of sparse signals, which should lead to further research in sparse sampling, as well as new applications.
Abstract: Sparse sampling of continuous-time sparse signals is addressed. In particular, it is shown that sampling at the rate of innovation is possible, in some sense applying Occam's razor to the sampling of sparse signals. The noisy case is analyzed and solved, proposing methods reaching the optimal performance given by the Cramer-Rao bounds. Finally, a number of applications have been discussed where sparsity can be taken advantage of. The comprehensive coverage given in this article should lead to further research in sparse sampling, as well as new applications. One main application to use the theory presented in this article is ultra-wide band (UWB) communications.

Content maybe subject to copyright    Report

Citations
More filters
Journal ArticleDOI
TL;DR: A new type of data acquisition system, called a random demodulator, that is constructed from robust, readily available components that supports the empirical observations, and a detailed theoretical analysis of the system's performance is provided.
Abstract: Wideband analog signals push contemporary analog-to-digital conversion (ADC) systems to their performance limits. In many applications, however, sampling at the Nyquist rate is inefficient because the signals of interest contain only a small number of significant frequencies relative to the band limit, although the locations of the frequencies may not be known a priori. For this type of sparse signal, other sampling strategies are possible. This paper describes a new type of data acquisition system, called a random demodulator, that is constructed from robust, readily available components. Let K denote the total number of frequencies in the signal, and let W denote its band limit in hertz. Simulations suggest that the random demodulator requires just O(K log(W/K)) samples per second to stably reconstruct the signal. This sampling rate is exponentially lower than the Nyquist rate of W hertz. In contrast to Nyquist sampling, one must use nonlinear methods, such as convex programming, to recover the signal from the samples taken by the random demodulator. This paper provides a detailed theoretical analysis of the system's performance that supports the empirical observations.

1,138 citations

Journal ArticleDOI
TL;DR: The prime focus is bridging theory and practice, to pinpoint the potential of structured CS strategies to emerge from the math to the hardware in compressive sensing.
Abstract: Compressed sensing (CS) is an emerging field that has attracted considerable research interest over the past few years. Previous review articles in CS limit their scope to standard discrete-to-discrete measurement architectures using matrices of randomized nature and signal models based on standard sparsity. In recent years, CS has worked its way into several new application areas. This, in turn, necessitates a fresh look on many of the basics of CS. The random matrix measurement operator must be replaced by more structured sensing architectures that correspond to the characteristics of feasible acquisition hardware. The standard sparsity prior has to be extended to include a much richer class of signals and to encode broader data models, including continuous-time signals. In our overview, the theme is exploiting signal and measurement structure in compressive sensing. The prime focus is bridging theory and practice; that is, to pinpoint the potential of structured CS strategies to emerge from the math to the hardware. Our summary highlights new directions as well as relations to more traditional CS, with the hope of serving both as a review to practitioners wanting to join this emerging field, and as a reference for researchers that attempts to put some of the existing ideas in perspective of practical applications.

1,090 citations


Cites background or methods from "Sparse Sampling of Signal Innovatio..."

  • ...[6]–[8] as a special case of signals having a finite number of degrees of freedom per unit time, termed finite rate of innovation (FRI) signals....

    [...]

  • ...Our sampling scheme follows the ideas of [6]–[8] and consists of a filter followed by uniform sampling of the output with period , where is the number of samples in one period, and ....

    [...]

  • ...[166], [167], and the annihilating filter [8]....

    [...]

  • ...This has also led to parallel low-rate sampling schemes that combine the principles of CS with the rich theory of sampling such as the finite rate of innovation (FRI) [6]–[8] and Xampling frameworks [9], [10]....

    [...]

Journal ArticleDOI
TL;DR: This paper investigates the problem of estimating the frequency components of a mixture of s complex sinusoids from a random subset of n regularly spaced samples and proposes an atomic norm minimization approach to exactly recover the unobserved samples and identify the unknown frequencies.
Abstract: This paper investigates the problem of estimating the frequency components of a mixture of s complex sinusoids from a random subset of n regularly spaced samples. Unlike previous work in compressed sensing, the frequencies are not assumed to lie on a grid, but can assume any values in the normalized frequency domain [0, 1]. An atomic norm minimization approach is proposed to exactly recover the unobserved samples and identify the unknown frequencies, which is then reformulated as an exact semidefinite program. Even with this continuous dictionary, it is shown that O(slog s log n) random samples are sufficient to guarantee exact frequency localization with high probability, provided the frequencies are well separated. Extensive numerical experiments are performed to illustrate the effectiveness of the proposed method.

920 citations


Cites background from "Sparse Sampling of Signal Innovatio..."

  • ...A survey of these methods can be found in [42] and an extensive list of references is given in [23]....

    [...]

  • ...With equispaced samples, these rootfinding-based procedures deal with the problem directly on the continuous frequency domain, and can recover frequencies provided the number of samples is at least twice of the number of frequencies, regardless of how closely these frequencies are located [5], [21], [23], [42]....

    [...]

Journal ArticleDOI
25 Feb 2010
TL;DR: The accessible framework provided by compressed sensing illuminates the impact of joining these themes and potential future directions are conjectured both for extension of theory motivated by practice and for modification of practice based on theoretical insights.
Abstract: Remote sensing with radar is typically an ill-posed linear inverse problem: a scene is to be inferred from limited measurements of scattered electric fields. Parsimonious models provide a compressed representation of the unknown scene and offer a means for regularizing the inversion task. The emerging field of compressed sensing combines nonlinear reconstruction algorithms and pseudorandom linear measurements to provide reconstruction guarantees for sparse solutions to linear inverse problems. This paper surveys the use of sparse reconstruction algorithms and randomized measurement strategies in radar processing. Although the two themes have a long history in radar literature, the accessible framework provided by compressed sensing illuminates the impact of joining these themes. Potential future directions are conjectured both for extension of theory motivated by practice and for modification of practice based on theoretical insights.

709 citations


Cites background or methods from "Sparse Sampling of Signal Innovatio..."

  • ...Resolution is the ability to detect two objects in close proximity [ 73 ], [101], [102], while accuracy refers to the mean squared error in estimating the object’s parameters (location, amplitude, etc.)....

    [...]

  • ...The subspace methods can achieve the Crame`r–Rao lower bound on location error variance for the sum-of-reflectors model with sufficiently high signal-to-noise ratio [ 73 ]....

    [...]

Posted Content
TL;DR: In this article, the frequency components of a mixture of s complex sinusoids from a random subset of n regularly spaced samples are estimated using an atomic norm minimization approach to exactly recover the unobserved samples.
Abstract: We consider the problem of estimating the frequency components of a mixture of s complex sinusoids from a random subset of n regularly spaced samples. Unlike previous work in compressed sensing, the frequencies are not assumed to lie on a grid, but can assume any values in the normalized frequency domain [0,1]. We propose an atomic norm minimization approach to exactly recover the unobserved samples. We reformulate this atomic norm minimization as an exact semidefinite program. Even with this continuous dictionary, we show that most sampling sets of size O(s log s log n) are sufficient to guarantee the exact frequency estimation with high probability, provided the frequencies are well separated. Numerical experiments are performed to illustrate the effectiveness of the proposed method.

704 citations

References
More filters
Journal ArticleDOI
TL;DR: This final installment of the paper considers the case where the signals or the messages or both are continuously variable, in contrast with the discrete nature assumed until now.
Abstract: In this final installment of the paper we consider the case where the signals or the messages or both are continuously variable, in contrast with the discrete nature assumed until now. To a considerable extent the continuous case can be obtained through a limiting process from the discrete case by dividing the continuum of messages and signals into a large but finite number of small regions and calculating the various parameters involved on a discrete basis. As the size of the regions is decreased these parameters in general approach as limits the proper values for the continuous case. There are, however, a few new effects that appear and also a general change of emphasis in the direction of specialization of the general results to particular cases.

65,425 citations

Book
D.L. Donoho1
01 Jan 2004
TL;DR: It is possible to design n=O(Nlog(m)) nonadaptive measurements allowing reconstruction with accuracy comparable to that attainable with direct knowledge of the N most important coefficients, and a good approximation to those N important coefficients is extracted from the n measurements by solving a linear program-Basis Pursuit in signal processing.
Abstract: Suppose x is an unknown vector in Ropfm (a digital image or signal); we plan to measure n general linear functionals of x and then reconstruct. If x is known to be compressible by transform coding with a known transform, and we reconstruct via the nonlinear procedure defined here, the number of measurements n can be dramatically smaller than the size m. Thus, certain natural classes of images with m pixels need only n=O(m1/4log5/2(m)) nonadaptive nonpixel samples for faithful recovery, as opposed to the usual m pixel samples. More specifically, suppose x has a sparse representation in some orthonormal basis (e.g., wavelet, Fourier) or tight frame (e.g., curvelet, Gabor)-so the coefficients belong to an lscrp ball for 0

18,609 citations

Journal ArticleDOI
TL;DR: In this paper, the authors considered the model problem of reconstructing an object from incomplete frequency samples and showed that with probability at least 1-O(N/sup -M/), f can be reconstructed exactly as the solution to the lscr/sub 1/ minimization problem.
Abstract: This paper considers the model problem of reconstructing an object from incomplete frequency samples. Consider a discrete-time signal f/spl isin/C/sup N/ and a randomly chosen set of frequencies /spl Omega/. Is it possible to reconstruct f from the partial knowledge of its Fourier coefficients on the set /spl Omega/? A typical result of this paper is as follows. Suppose that f is a superposition of |T| spikes f(t)=/spl sigma//sub /spl tau//spl isin/T/f(/spl tau/)/spl delta/(t-/spl tau/) obeying |T|/spl les/C/sub M//spl middot/(log N)/sup -1/ /spl middot/ |/spl Omega/| for some constant C/sub M/>0. We do not know the locations of the spikes nor their amplitudes. Then with probability at least 1-O(N/sup -M/), f can be reconstructed exactly as the solution to the /spl lscr//sub 1/ minimization problem. In short, exact recovery may be obtained by solving a convex optimization problem. We give numerical values for C/sub M/ which depend on the desired probability of success. Our result may be interpreted as a novel kind of nonlinear sampling theorem. In effect, it says that any signal made out of |T| spikes may be recovered by convex programming from almost every set of frequencies of size O(|T|/spl middot/logN). Moreover, this is nearly optimal in the sense that any method succeeding with probability 1-O(N/sup -M/) would in general require a number of frequency samples at least proportional to |T|/spl middot/logN. The methodology extends to a variety of other situations and higher dimensions. For example, we show how one can reconstruct a piecewise constant (one- or two-dimensional) object from incomplete frequency samples - provided that the number of jumps (discontinuities) obeys the condition above - by minimizing other convex functionals such as the total variation of f.

14,587 citations

Journal ArticleDOI
TL;DR: In this paper, the authors considered the problem of recovering a vector x ∈ R^m from incomplete and contaminated observations y = Ax ∈ e + e, where e is an error term.
Abstract: Suppose we wish to recover a vector x_0 Є R^m (e.g., a digital signal or image) from incomplete and contaminated observations y = Ax_0 + e; A is an n by m matrix with far fewer rows than columns (n « m) and e is an error term. Is it possible to recover x_0 accurately based on the data y? To recover x_0, we consider the solution x^# to the l_(1-)regularization problem min ‖x‖l_1 subject to ‖Ax - y‖l(2) ≤ Є, where Є is the size of the error term e. We show that if A obeys a uniform uncertainty principle (with unit-normed columns) and if the vector x_0 is sufficiently sparse, then the solution is within the noise level ‖x^# - x_0‖l_2 ≤ C Є. As a first example, suppose that A is a Gaussian random matrix; then stable recovery occurs for almost all such A's provided that the number of nonzeros of x_0 is of about the same order as the number of observations. As a second instance, suppose one observes few Fourier samples of x_0; then stable recovery occurs for almost any set of n coefficients provided that the number of nonzeros is of the order of n/[log m]^6. In the case where the error term vanishes, the recovery is of course exact, and this work actually provides novel insights into the exact recovery phenomenon discussed in earlier papers. The methodology also explains why one can also very nearly recover approximately sparse signals.

6,727 citations

Posted Content
TL;DR: It is shown that it is possible to recover x0 accurately based on the data y from incomplete and contaminated observations.
Abstract: Suppose we wish to recover an n-dimensional real-valued vector x_0 (e.g. a digital signal or image) from incomplete and contaminated observations y = A x_0 + e; A is a n by m matrix with far fewer rows than columns (n << m) and e is an error term. Is it possible to recover x_0 accurately based on the data y? To recover x_0, we consider the solution x* to the l1-regularization problem min \|x\|_1 subject to \|Ax-y\|_2 <= epsilon, where epsilon is the size of the error term e. We show that if A obeys a uniform uncertainty principle (with unit-normed columns) and if the vector x_0 is sufficiently sparse, then the solution is within the noise level \|x* - x_0\|_2 \le C epsilon. As a first example, suppose that A is a Gaussian random matrix, then stable recovery occurs for almost all such A's provided that the number of nonzeros of x_0 is of about the same order as the number of observations. Second, suppose one observes few Fourier samples of x_0, then stable recovery occurs for almost any set of p coefficients provided that the number of nonzeros is of the order of n/[\log m]^6. In the case where the error term vanishes, the recovery is of course exact, and this work actually provides novel insights on the exact recovery phenomenon discussed in earlier papers. The methodology also explains why one can also very nearly recover approximately sparse signals.

6,226 citations


"Sparse Sampling of Signal Innovatio..." refers background in this paper

  • ...does not provide an exactly K-sparse solution anymore, although � 1/� 2 stable recovery of the x� k� is statistically guaranteed [ 20 ]....

    [...]