scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Spatial and Temporal Correlation of Water Quality Parameters of Produced Waters from Devonian-Age Shale following Hydraulic Fracturing

01 Mar 2013-Environmental Science & Technology (American Chemical Society)-Vol. 47, Iss: 6, pp 2562-2569
TL;DR: Water quality analysis in this study may help guide water management strategies for development of unconventional gas resources through comparisons against brines from adjacent formations.
Abstract: The exponential increase in fossil energy production from Devonian-age shale in the Northeastern United States has highlighted the management challenges for produced waters from hydraulically fractured wells. Confounding these challenges is a scant availability of critical water quality parameters for this wastewater. Chemical analyses of 160 flowback and produced water samples collected from hydraulically fractured Marcellus Shale gas wells in Pennsylvania were correlated with spatial and temporal information to reveal underlying trends. Chloride was used as a reference for the comparison as its concentration varies with time of contact with the shale. Most major cations (i.e., Ca, Mg, Sr) were well-correlated with chloride concentration while barium exhibited strong influence of geographic location (i.e., higher levels in the northeast than in southwest). Comparisons against brines from adjacent formations provide insight into the origin of salinity in produced waters from Marcellus Shale. Major cations...
Citations
More filters
Journal ArticleDOI
17 May 2013-Science
TL;DR: Improved understanding of the fate and transport of contaminants of concern and increased long-term monitoring and data dissemination will help effectively manage water-quality risks associated with unconventional gas industry today and in the future.
Abstract: Unconventional natural gas resources offer an opportunity to access a relatively clean fossil fuel that could potentially lead to energy independence for some countries. Horizontal drilling and hydraulic fracturing make the extraction of tightly bound natural gas from shale formations economically feasible. These technologies are not free from environmental risks, however, especially those related to regional water quality, such as gas migration, contaminant transport through induced and natural fractures, wastewater discharge, and accidental spills. We review the current understanding of environmental issues associated with unconventional gas extraction. Improved understanding of the fate and transport of contaminants of concern and increased long-term monitoring and data dissemination will help manage these water-quality risks today and in the future.

1,263 citations

Journal ArticleDOI
TL;DR: Analysis of published data reveals evidence for stray gas contamination, surface water impacts in areas of intensive shale gas development, and the accumulation of radium isotopes in some disposal and spill sites.
Abstract: The rapid rise of shale gas development through horizontal drilling and high volume hydraulic fracturing has expanded the extraction of hydrocarbon resources in the U.S. The rise of shale gas development has triggered an intense public debate regarding the potential environmental and human health effects from hydraulic fracturing. This paper provides a critical review of the potential risks that shale gas operations pose to water resources, with an emphasis on case studies mostly from the U.S. Four potential risks for water resources are identified: (1) the contamination of shallow aquifers with fugitive hydrocarbon gases (i.e., stray gas contamination), which can also potentially lead to the salinization of shallow groundwater through leaking natural gas wells and subsurface flow; (2) the contamination of surface water and shallow groundwater from spills, leaks, and/or the disposal of inadequately treated shale gas wastewater; (3) the accumulation of toxic and radioactive elements in soil or stream sediments near disposal or spill sites; and (4) the overextraction of water resources for high-volume hydraulic fracturing that could induce water shortages or conflicts with other water users, particularly in water-scarce areas. Analysis of published data (through January 2014) reveals evidence for stray gas contamination, surface water impacts in areas of intensive shale gas development, and the accumulation of radium isotopes in some disposal and spill sites. The direct contamination of shallow groundwater from hydraulic fracturing fluids and deep formation waters by hydraulic fracturing itself, however, remains controversial.

1,255 citations

Journal ArticleDOI
TL;DR: Risks to public health from chemical and nonchemical stressors associated with UNG are evaluated, likely exposure pathways and potential health effects are described, and major uncertainties to address are identified.
Abstract: The rapid increase in unconventional natural gas (UNG) development in the United States during the past decade has brought wells and related infrastructure closer to population centers. This review evaluates risks to public health from chemical and nonchemical stressors associated with UNG, describes likely exposure pathways and potential health effects, and identifies major uncertainties to address with future research. The most important occupational stressors include mortality, exposure to hazardous materials and increased risk of industrial accidents. For communities near development and production sites the major stressors are air pollutants, ground and surface water contamination, truck traffic and noise pollution, accidents and malfunctions, and psychosocial stress associated with community change. Despite broad public concern, no comprehensive population-based studies of the public health effects of UNG operations exist. Major uncertainties are the unknown frequency and duration of human exposure,...

419 citations

Journal ArticleDOI
TL;DR: In this article, the authors argue that the switch from coal to natural gas for electricity generation will reduce sulfur, nitrogen, mercury, and particulate air pollution, but the question of whether natural gas will displace coal compared with renewables is open.
Abstract: Unconventional oil and natural gas extraction enabled by horizontal drilling and hydraulic fracturing (fracking) is driving an economic boom, with consequences described from “revolutionary” to “disastrous.” Reality lies somewhere in between. Unconventional energy generates income and, done well, can reduce air pollution and even water use compared with other fossil fuels. Alternatively, it could slow the adoption of renewables and, done poorly, release toxic chemicals into water and air. Primary threats to water resources include surface spills, wastewater disposal, and drinking-water contamination through poor well integrity. An increase in volatile organic compounds and air toxics locally are potential health threats, but the switch from coal to natural gas for electricity generation will reduce sulfur, nitrogen, mercury, and particulate air pollution. Data gaps are particularly evident for human health studies, for the question of whether natural gas will displace coal compared with renewables, and fo...

364 citations


Cites background from "Spatial and Temporal Correlation of..."

  • ...These naturally occurring brines are often saline to hypersaline (35,000 to 200,000 mg/L TDS) (37) and contain potentially toxic levels of elements such as barium, arsenic, and radioactive radium (37, 94, 95)....

    [...]

Journal ArticleDOI
TL;DR: In this paper, the authors highlight characteristics of produced water in detail and physical, chemical, and biological techniques used for its treatment, and reuse of produced waters for different purposes has been discussed.
Abstract: In oil and gas industry, produced water is considered as the largest waste stream, which contains relatively higher concentration of hydrocarbons, heavy metals and other pollutants. Due to the increase in industrial activities, the generation of produced water has increased all over the world and its treatment for reuse is now important from environmental perspective. Treatment of produced water can be done through various methods including physical (membrane filtration, adsorption etc.), chemical (precipitation, oxidation), and biological (activated sludge, biological aerated filters and others) methods. This paper aims to highlight characteristics of produced water in detail and physical, chemical, and biological techniques used for its treatment. In addition, reuse of produced water for different purposes has been discussed. At the end, few case studies from different countries, related to the treatment and reuse of their produced waters have been included.

327 citations

References
More filters
Journal ArticleDOI
TL;DR: Major research efforts in the future could focus on the optimization of current technologies and use of combined physico-chemical and/or biological treatment of produced water in order to comply with reuse and discharge limits.

1,862 citations

Journal ArticleDOI
TL;DR: In this article, the authors evaluate the greenhouse gas footprint of natural gas obtained by high-volume hydraulic fracturing from shale formations, focusing on methane emissions, and find that 3.6% to 7.9% of the methane from shale-gas production escapes to the atmosphere in venting and leaks over the life time of a well.
Abstract: We evaluate the greenhouse gas footprint of natural gas obtained by high- volume hydraulic fracturing from shale formations, focusing on methane emissions. Natural gas is composed largely of methane, and 3.6% to 7.9% of the methane from shale-gas production escapes to the atmosphere in venting and leaks over the life- time of a well. These methane emissions are at least 30% more than and perhaps more than twice as great as those from conventional gas. The higher emissions from shale gas occur at the time wells are hydraulically fractured—as methane escapes from flow-back return fluids—and during drill out following the fracturing. Methane is a powerful greenhouse gas, with a global warming potential that is far greater than that of carbon dioxide, particularly over the time horizon of the first few decades following emission. Methane contributes substantially to the greenhouse gas footprint of shale gas on shorter time scales, dominating it on a 20-year time horizon. The footprint for shale gas is greater than that for conventional gas or oil when viewed on any time horizon, but particularly so over 20 years. Compared to coal, the footprint of shale gas is at least 20% greater and perhaps more than twice as great on the 20-year horizon and is comparable when compared over 100 years.

1,261 citations

Journal ArticleDOI
01 Jun 2011-Elements
TL;DR: Water management has emerged as a critical issue in the development of these inland gas reservoirs, where hydraulic fracturing is used to liberate the gas as discussed by the authors, where large volumes of water containing very high concentrations of total dissolved solids (TDS) return to the surface.
Abstract: Development of unconventional, onshore natural gas resources in deep shales is rapidly expanding to meet global energy needs. Water management has emerged as a critical issue in the development of these inland gas reservoirs, where hydraulic fracturing is used to liberate the gas. Following hydraulic fracturing, large volumes of water containing very high concentrations of total dissolved solids (TDS) return to the surface. The TDS concentration in this wastewater, also known as “flowback,” can reach 5 times that of sea water. Wastewaters that contain high TDS levels are challenging and costly to treat. Economical production of shale gas resources will require creative management of flowback to ensure protection of groundwater and surface water resources. Currently, deep-well injection is the primary means of management. However, in many areas where shale gas production will be abundant, deep-well injection sites are not available. With global concerns over the quality and quantity of fresh water, novel water management strategies and treatment technologies that will enable environmentally sustainable and economically feasible natural gas extraction will be critical for the development of this vast energy source.

809 citations

Journal ArticleDOI
TL;DR: Tapping the lucrative Marcellus Shale natural gas deposits may have a host of environmental concerns, according to a report by the USGS.
Abstract: Tapping the lucrative Marcellus Shale natural gas deposits may have a host of environmental concerns.

585 citations

Proceedings ArticleDOI
01 Jan 2010

575 citations