scispace - formally typeset
Search or ask a question
Book

Spatial Tessellations: Concepts and Applications of Voronoi Diagrams

TL;DR: In this article, the Voronoi diagram generalizations of the Voroni diagram algorithm for computing poisson Voroni diagrams are defined and basic properties of the generalization of Voroni's algorithm are discussed.
Abstract: Definitions and basic properties of the Voronoi diagram generalizations of the Voronoi diagram algorithms for computing Voronoi diagrams poisson Voronoi diagrams spatial interpolation models of spatial processes point pattern analysis locational optimization through Voronoi diagrams.

Content maybe subject to copyright    Report

Citations
More filters
Journal ArticleDOI
TL;DR: When n identical randomly located nodes, each capable of transmitting at W bits per second and using a fixed range, form a wireless network, the throughput /spl lambda/(n) obtainable by each node for a randomly chosen destination is /spl Theta/(W//spl radic/(nlogn)) bits persecond under a noninterference protocol.
Abstract: When n identical randomly located nodes, each capable of transmitting at W bits per second and using a fixed range, form a wireless network, the throughput /spl lambda/(n) obtainable by each node for a randomly chosen destination is /spl Theta/(W//spl radic/(nlogn)) bits per second under a noninterference protocol. If the nodes are optimally placed in a disk of unit area, traffic patterns are optimally assigned, and each transmission's range is optimally chosen, the bit-distance product that can be transported by the network per second is /spl Theta/(W/spl radic/An) bit-meters per second. Thus even under optimal circumstances, the throughput is only /spl Theta/(W//spl radic/n) bits per second for each node for a destination nonvanishingly far away. Similar results also hold under an alternate physical model where a required signal-to-interference ratio is specified for successful receptions. Fundamentally, it is the need for every node all over the domain to share whatever portion of the channel it is utilizing with nodes in its local neighborhood that is the reason for the constriction in capacity. Splitting the channel into several subchannels does not change any of the results. Some implications may be worth considering by designers. Since the throughput furnished to each user diminishes to zero as the number of users is increased, perhaps networks connecting smaller numbers of users, or featuring connections mostly with nearby neighbors, may be more likely to be find acceptance.

9,008 citations

Journal ArticleDOI
TL;DR: In this article, the authors developed new methods for analyzing the large sample properties of matching estimators and established a number of new results, such as the following: Matching estimators with replacement with a fixed number of matches are not N 1/2 -consistent.
Abstract: Matching estimators for average treatment effects are widely used in evaluation research despite the fact that their large sample properties have not been established in many cases. The absence of formal results in this area may be partly due to the fact that standard asymptotic expansions do not apply to matching estimators with a fixed number of matches because such estimators are highly nonsmooth functionals of the data. In this article we develop new methods for analyzing the large sample properties of matching estimators and establish a number of new results. We focus on matching with replacement with a fixed number of matches. First, we show that matching estimators are not N 1/2 -consistent in general and describe conditions under which matching estimators do attain N 1/2 -consistency. Second, we show that even in settings where matching estimators are N 1/2 -consistent, simple matching estimators with a fixed number of matches do not attain the semiparametric efficiency bound. Third, we provide a consistent estimator for the large sample variance that does not require consistent nonparametric estimation of unknown functions. Software for implementing these methods is available in Matlab, Stata, and R.

2,207 citations

Journal ArticleDOI
TL;DR: Some applications of centroidal Voronoi tessellations to problems in image compression, quadrature, finite difference methods, distribution of resources, cellular biology, statistics, and the territorial behavior of animals are given.
Abstract: A centroidal Voronoi tessellation is a Voronoi tessellation whose generating points are the centroids (centers of mass) of the corresponding Voronoi regions. We give some applications of such tessellations to problems in image compression, quadrature, finite difference methods, distribution of resources, cellular biology, statistics, and the territorial behavior of animals. We discuss methods for computing these tessellations, provide some analyses concerning both the tessellations and the methods for their determination, and, finally, present the results of some numerical experiments.

2,151 citations

Journal ArticleDOI
TL;DR: In this article, a moving unstructured mesh defined by the Voronoi tessellation of a set of discrete points is used to solve the hyperbolic conservation laws of ideal hydrodynamics with a finite volume approach, based on a second-order unsplit Godunov scheme with an exact Riemann solver.
Abstract: Hydrodynamic cosmological simulations at present usually employ either the Lagrangian smoothed particle hydrodynamics (SPH) technique or Eulerian hydrodynamics on a Cartesian mesh with (optional) adaptive mesh refinement (AMR). Both of these methods have disadvantages that negatively impact their accuracy in certain situations, for example the suppression of fluid instabilities in the case of SPH, and the lack of Galilean invariance and the presence of overmixing in the case of AMR. We here propose a novel scheme which largely eliminates these weaknesses. It is based on a moving unstructured mesh defined by the Voronoi tessellation of a set of discrete points. The mesh is used to solve the hyperbolic conservation laws of ideal hydrodynamics with a finite-volume approach, based on a second-order unsplit Godunov scheme with an exact Riemann solver. The mesh-generating points can in principle be moved arbitrarily. If they are chosen to be stationary, the scheme is equivalent to an ordinary Eulerian method with second-order accuracy. If they instead move with the velocity of the local flow, one obtains a Lagrangian formulation of continuum hydrodynamics that does not suffer from the mesh distortion limitations inherent in other mesh-based Lagrangian schemes. In this mode, our new method is fully Galilean invariant, unlike ordinary Eulerian codes, a property that is of significant importance for cosmological simulations where highly supersonic bulk flows are common. In addition, the new scheme can adjust its spatial resolution automatically and continuously, and hence inherits the principal advantage of SPH for simulations of cosmological structure growth. The high accuracy of Eulerian methods in the treatment of shocks is also retained, while the treatment of contact discontinuities improves. We discuss how this approach is implemented in our new code arepo, both in 2D and in 3D, and is parallelized for distributed memory computers. We also discuss techniques for adaptive refinement or de-refinement of the unstructured mesh. We introduce an individual time-step approach for finite-volume hydrodynamics, and present a high-accuracy treatment of self-gravity for the gas that allows the new method to be seamlessly combined with a high-resolution treatment of collisionless dark matter. We use a suite of test problems to examine the performance of the new code and argue that the hydrodynamic moving-mesh scheme proposed here provides an attractive and competitive alternative to current SPH and Eulerian techniques.

1,778 citations

Journal ArticleDOI
TL;DR: In this article, a numerical method for solving dynamic problems within the peridynamic theory is described, and the properties of the method for modeling brittle dynamic crack growth are discussed, as well as its accuracy and numerical stability.

1,644 citations