scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Spatially Selective Artificial-Noise Aided Transmit Optimization for MISO Multi-Eves Secrecy Rate Maximization

01 May 2013-IEEE Transactions on Signal Processing (IEEE)-Vol. 61, Iss: 10, pp 2704-2717
TL;DR: This paper considers joint optimization of the transmit and AN covariances for secrecy rate maximization (SRM), with a design flexibility that the AN can take any spatial pattern, and derives an optimization approach to the SRM problem through both analysis and convex conic optimization machinery.
Abstract: Consider an MISO channel overheard by multiple eavesdroppers. Our goal is to design an artificial noise (AN)-aided transmit strategy, such that the achievable secrecy rate is maximized subject to the sum power constraint. AN-aided secure transmission has recently been found to be a promising approach for blocking eavesdropping attempts. In many existing studies, the confidential information transmit covariance and the AN covariance are not simultaneously optimized. In particular, for design convenience, it is common to prefix the AN covariance as a specific kind of spatially isotropic covariance. This paper considers joint optimization of the transmit and AN covariances for secrecy rate maximization (SRM), with a design flexibility that the AN can take any spatial pattern. Hence, the proposed design has potential in jamming the eavesdroppers more effectively, based upon the channel state information (CSI). We derive an optimization approach to the SRM problem through both analysis and convex conic optimization machinery. We show that the SRM problem can be recast as a single-variable optimization problem, and that resultant problem can be efficiently handled by solving a sequence of semidefinite programs. Our framework deals with a general setup of multiple multi-antenna eavesdroppers, and can cater for additional constraints arising from specific application scenarios, such as interference temperature constraints in interference networks. We also generalize the framework to an imperfect CSI case where a worst-case robust SRM formulation is considered. A suboptimal but safe solution to the outage-constrained robust SRM design is also investigated. Simulation results show that the proposed AN-aided SRM design yields significant secrecy rate gains over an optimal no-AN design and the isotropic AN design, especially when there are more eavesdroppers.
Citations
More filters
Journal ArticleDOI
TL;DR: A comprehensive review of the domain of physical layer security in multiuser wireless networks, with an overview of the foundations dating back to the pioneering work of Shannon and Wyner on information-theoretic security and observations on potential research directions in this area.
Abstract: This paper provides a comprehensive review of the domain of physical layer security in multiuser wireless networks. The essential premise of physical layer security is to enable the exchange of confidential messages over a wireless medium in the presence of unauthorized eavesdroppers, without relying on higher-layer encryption. This can be achieved primarily in two ways: without the need for a secret key by intelligently designing transmit coding strategies, or by exploiting the wireless communication medium to develop secret keys over public channels. The survey begins with an overview of the foundations dating back to the pioneering work of Shannon and Wyner on information-theoretic security. We then describe the evolution of secure transmission strategies from point-to-point channels to multiple-antenna systems, followed by generalizations to multiuser broadcast, multiple-access, interference, and relay networks. Secret-key generation and establishment protocols based on physical layer mechanisms are subsequently covered. Approaches for secrecy based on channel coding design are then examined, along with a description of inter-disciplinary approaches based on game theory and stochastic geometry. The associated problem of physical layer message authentication is also briefly introduced. The survey concludes with observations on potential research directions in this area.

1,294 citations


Cites methods from "Spatially Selective Artificial-Nois..."

  • ...If the eavesdropper’s CSIT is partially known, additional gains may be achieved by optimizing the AN transmit covariance [45] or relaxing the orthogonality constraint [46]....

    [...]

Journal ArticleDOI
TL;DR: Numerical results unveil a substantial performance gain that can be achieved if the resource allocation design is based on the proposed non-linear energy harvesting model instead of the traditional linear model.
Abstract: In this letter, we propose a practical non-linear energy harvesting model and design a resource allocation algorithm for simultaneous wireless information and power transfer (SWIPT) systems. The algorithm design is formulated as a non-convex optimization problem for the maximization of the total harvested power at energy harvesting receivers subject to minimum required signal-to-interference-plus-noise ratios (SINRs) at multiple information receivers. We transform the considered non-convex objective function from sum-of-ratios form into an equivalent objective function in subtractive form, which enables the derivation of an efficient iterative resource allocation algorithm. In each iteration, a rank-constrained semidefinite program (SDP) is solved optimally by SDP relaxation. Numerical results unveil a substantial performance gain that can be achieved if the resource allocation design is based on the proposed non-linear energy harvesting model instead of the traditional linear model.

863 citations

Journal ArticleDOI
TL;DR: In this article, the authors investigated the joint design of the beamformers and AN covariance matrix at the AP and the phase shifters at the RISs for maximization of the system sum-rate while limiting the maximum information leakage to the potential eavesdroppers.
Abstract: In this paper, intelligent reflecting surfaces (IRSs) are employed to enhance the physical layer security in a challenging radio environment. In particular, a multi-antenna access point (AP) has to serve multiple single-antenna legitimate users, which do not have line-of-sight communication links, in the presence of multiple multi-antenna potential eavesdroppers whose channel state information (CSI) is not perfectly known. Artificial noise (AN) is transmitted from the AP to deliberately impair the eavesdropping channels for security provisioning. We investigate the joint design of the beamformers and AN covariance matrix at the AP and the phase shifters at the IRSs for maximization of the system sum-rate while limiting the maximum information leakage to the potential eavesdroppers. To this end, we formulate a robust non-convex optimization problem taking into account the impact of the imperfect CSI of the eavesdropping channels. To address the non-convexity of the optimization problem, an efficient algorithm is developed by capitalizing on alternating optimization, a penalty-based approach, successive convex approximation, and semidefinite relaxation. Simulation results show that IRSs can significantly improve the system secrecy performance compared to conventional architectures without IRS. Furthermore, our results unveil that, for physical layer security, uniformly distributing the reflecting elements among multiple IRSs is preferable over deploying them at a single IRS.

552 citations

Journal ArticleDOI
TL;DR: In this article, the authors studied the design of a resource allocation algorithm minimizing the total transmit power for the case when the legitimate receivers are able to harvest energy from radio frequency signals and proposed a suboptimal resource allocation scheme with low computational complexity for providing communication secrecy and facilitating efficient energy transfer.
Abstract: This paper considers a multiuser multiple-input single-output (MISO) downlink system with simultaneous wireless information and power transfer. In particular, we focus on secure communication in the presence of passive eavesdroppers and potential eavesdroppers (idle legitimate receivers). We study the design of a resource allocation algorithm minimizing the total transmit power for the case when the legitimate receivers are able to harvest energy from radio frequency signals. Our design advocates the dual use of both artificial noise and energy signals in providing secure communication and facilitating efficient wireless energy transfer. The algorithm design is formulated as a non-convex optimization problem. The problem formulation takes into account artificial noise and energy signal generation for protecting the transmitted information against both considered types of eavesdroppers when imperfect channel state information (CSI) of the potential eavesdroppers and no CSI of the passive eavesdroppers are available at the transmitter. Besides, the problem formulation also takes into account different quality of service (QoS) requirements: a minimum required signal-to-interference-plus-noise ratio (SINR) at the desired receiver; maximum tolerable SINRs at the potential eavesdroppers; a minimum required outage probability at the passive eavesdroppers; and minimum required heterogeneous amounts of power transferred to the idle legitimate receivers. In light of the intractability of the problem, we reformulate the considered problem by replacing a non-convex probabilistic constraint with a convex deterministic constraint. Then, a semi-definite programming (SDP) relaxation approach is adopted to obtain the optimal solution for the reformulated problem. Furthermore, we propose a suboptimal resource allocation scheme with low computational complexity for providing communication secrecy and facilitating efficient energy transfer. Simulation results demonstrate the close-to-optimal performance of the proposed schemes and significant transmit power savings by optimization of the artificial noise and energy signal generation.

509 citations

Journal ArticleDOI
TL;DR: A suboptimal resource allocation scheme with low computational complexity for providing communication secrecy and facilitating efficient energy transfer is proposed for a multiuser multiple-input single-output (MISO) downlink system with simultaneous wireless information and power transfer.
Abstract: This paper considers a multiuser multiple-input single-output (MISO) downlink system with simultaneous wireless information and power transfer. In particular, we focus on secure communication in the presence of passive eavesdroppers and potential eavesdroppers (idle legitimate receivers). We study the design of a resource allocation algorithm minimizing the total transmit power for the case when the legitimate receivers are able to harvest energy from radio frequency signals. Our design advocates the dual use of both artificial noise and energy signals in providing secure communication and facilitating efficient wireless energy transfer. The algorithm design is formulated as a non-convex optimization problem. The problem formulation takes into account artificial noise and energy signal generation for protecting the transmitted information against both considered types of eavesdroppers when imperfect channel state information (CSI) of the potential eavesdroppers and no CSI of the passive eavesdroppers are available at the transmitter. In light of the intractability of the problem, we reformulate the considered problem by replacing a non-convex probabilistic constraint with a convex deterministic constraint. Then, a semi-definite programming (SDP) relaxation approach is adopted to obtain the optimal solution for the reformulated problem. Furthermore, we propose a suboptimal resource allocation scheme with low computational complexity for providing communication secrecy and facilitating efficient energy transfer. Simulation results demonstrate a close-to-optimal performance achieved by the proposed schemes and significant transmit power savings by optimization of the artificial noise and energy signal generation.

436 citations

References
More filters
Book
01 Jan 1995

12,671 citations


"Spatially Selective Artificial-Nois..." refers background or methods in this paper

  • ... + , M ∈ H Nt + , λ ∈ R+, Ak ∈ H Ne,k + and ηl ∈ R+ are dual variables associated with W 0, Σ 0, (45b), and (45c), respectively. Assuming that problem (45) satisfies s ome constraint qualifications [33], the KKT conditions that are relevant to the proof are given by I−λhhH + PK k=1 GkAkG H k + PL l=1 ηlΦl −Q = 0, (46a) QW = 0, (46b) W 0, Ak 0, ∀k, ηl ≥ 0,∀l, (46c) Postmultiplying (46a) by W and ...

    [...]

  • ...ivative-free search algorithms for solving one-dimensional optimization problems, e.g., compass or coordinate search (cf. [31], [32]). In practice, we use either uniform sampling or the golden search [33] to obtain a satisfactory solution. Once problem (13) is solved, the solution (Q ⋆,Γ ,ξ⋆) outputted from the SDP (16) can be used to recover W ⋆and Σ through the relation (15). Note that an additional...

    [...]

Journal ArticleDOI
Jos F. Sturm1
TL;DR: This paper describes how to work with SeDuMi, an add-on for MATLAB, which lets you solve optimization problems with linear, quadratic and semidefiniteness constraints by exploiting sparsity.
Abstract: SeDuMi is an add-on for MATLAB, which lets you solve optimization problems with linear, quadratic and semidefiniteness constraints. It is possible to have complex valued data and variables in SeDuMi. Moreover, large scale optimization problems are solved efficiently, by exploiting sparsity. This paper describes how to work with this toolbox.

7,655 citations


"Spatially Selective Artificial-Nois..." refers background in this paper

  • ...In many existing studies, the confidential information transmit covariance and the AN covariance are not simultaneously optimized....

    [...]

Journal ArticleDOI
TL;DR: This paper finds the trade-off curve between R and d, assuming essentially perfect (“error-free”) transmission, and implies that there exists a Cs > 0, such that reliable transmission at rates up to Cs is possible in approximately perfect secrecy.
Abstract: We consider the situation in which digital data is to be reliably transmitted over a discrete, memoryless channel (dmc) that is subjected to a wire-tap at the receiver. We assume that the wire-tapper views the channel output via a second dmc). Encoding by the transmitter and decoding by the receiver are permitted. However, the code books used in these operations are assumed to be known by the wire-tapper. The designer attempts to build the encoder-decoder in such a way as to maximize the transmission rate R, and the equivocation d of the data as seen by the wire-tapper. In this paper, we find the trade-off curve between R and d, assuming essentially perfect (“error-free”) transmission. In particular, if d is equal to Hs, the entropy of the data source, then we consider that the transmission is accomplished in perfect secrecy. Our results imply that there exists a C s > 0, such that reliable transmission at rates up to C s is possible in approximately perfect secrecy.

7,129 citations

Journal ArticleDOI
TL;DR: A practical secure communication protocol is developed, which uses a four-step procedure to ensure wireless information-theoretic security and is shown that the protocol is effective in secure key renewal-even in the presence of imperfect channel state information.
Abstract: This paper considers the transmission of confidential data over wireless channels. Based on an information-theoretic formulation of the problem, in which two legitimates partners communicate over a quasi-static fading channel and an eavesdropper observes their transmissions through a second independent quasi-static fading channel, the important role of fading is characterized in terms of average secure communication rates and outage probability. Based on the insights from this analysis, a practical secure communication protocol is developed, which uses a four-step procedure to ensure wireless information-theoretic security: (i) common randomness via opportunistic transmission, (ii) message reconciliation, (iii) common key generation via privacy amplification, and (iv) message protection with a secret key. A reconciliation procedure based on multilevel coding and optimized low-density parity-check (LDPC) codes is introduced, which allows to achieve communication rates close to the fundamental security limits in several relevant instances. Finally, a set of metrics for assessing average secure key generation rates is established, and it is shown that the protocol is effective in secure key renewal-even in the presence of imperfect channel state information.

1,759 citations