scispace - formally typeset
Search or ask a question
Book

Speaking: From Intention to Articulation

01 Jan 1989-
TL;DR: In this article, Willem "Pim" Levelt, Director of the Max-Planck Institute for Psycholinguistik, accomplishes the formidable task of covering the entire process of speech production from constraints on conversational appropriateness to articulation and self-monitoring of speech.
Abstract: In Speaking, Willem "Pim" Levelt, Director of the Max-Planck-Institut fur Psycholinguistik, accomplishes the formidable task of covering the entire process of speech production, from constraints on conversational appropriateness to articulation and self-monitoring of speech. Speaking is unique in its balanced coverage of all major aspects of the production of speech, in the completeness of its treatment of the entire speech process, and in its strategy of exemplifying rather than formalizing theoretical issues.
Citations
More filters
Journal ArticleDOI
TL;DR: The model can handle some of the main observations in the domain of speech errors (the major empirical domain for most other theories of lexical access), and the theory opens new ways of approaching the cerebral organization of speech production by way of high-temporal-resolution imaging.
Abstract: Preparing words in speech production is normally a fast and accurate process. We generate them two or three per second in fluent conversation; and overtly naming a clear picture of an object can easily be initiated within 600 msec after picture onset. The underlying process, however, is exceedingly complex. The theory reviewed in this target article analyzes this process as staged and feed-forward. After a first stage of conceptual preparation, word generation proceeds through lexical selection, morphological and phonological encoding, phonetic encoding, and articulation itself. In addition, the speaker exerts some degree of output control, by monitoring of self-produced internal and overt speech. The core of the theory, ranging from lexical selection to the initiation of phonetic encoding, is captured in a computational model, called WEAVER++. Both the theory and the computational model have been developed in interaction with reaction time experiments, particularly in picture naming or related word production paradigms, with the aim of accounting for the real-time processing in normal word production. A comprehensive review of theory, model, and experiments is presented. The model can handle some of the main observations in the domain of speech errors (the major empirical domain for most other theories of lexical access), and the theory opens new ways of approaching the cerebral organization of speech production by way of high-temporal-resolution imaging.

3,958 citations

Book
01 Jul 2002
TL;DR: In this article, a review is presented of the book "Heuristics and Biases: The Psychology of Intuitive Judgment, edited by Thomas Gilovich, Dale Griffin, and Daniel Kahneman".
Abstract: A review is presented of the book “Heuristics and Biases: The Psychology of Intuitive Judgment,” edited by Thomas Gilovich, Dale Griffin, and Daniel Kahneman.

3,642 citations

Journal ArticleDOI
TL;DR: In this paper, the authors examined the implica- tions of individual differences in performance for each of the four explanations of the normative/descriptive gap, including performance errors, computational limitations, the wrong norm being applied by the experi- menter, and a different construal of the task by the subject.
Abstract: Much research in the last two decades has demon- strated that human responses deviate from the performance deemed normative according to various models of decision mak- ing and rational judgment (e.g., the basic axioms of utility theory). This gap between the normative and the descriptive can be inter- preted as indicating systematic irrationalities in human cognition. However, four alternative interpretations preserve the assumption that human behavior and cognition is largely rational. These posit that the gap is due to (1) performance errors, (2) computational limitations, (3) the wrong norm being applied by the experi- menter, and (4) a different construal of the task by the subject. In the debates about the viability of these alternative explanations, attention has been focused too narrowly on the modal response. In a series of experiments involving most of the classic tasks in the heuristics and biases literature, we have examined the implica- tions of individual differences in performance for each of the four explanations of the normative/descriptive gap. Performance er- rors are a minor factor in the gap; computational limitations un- derlie non-normative responding on several tasks, particularly those that involve some type of cognitive decontextualization. Un- expected patterns of covariance can suggest when the wrong norm is being applied to a task or when an alternative construal of the task should be considered appropriate.

3,068 citations

Book ChapterDOI
01 Jul 2002
TL;DR: The program of research now known as the heuristics and biases approach began with a survey of 84 participants at the 1969 meetings of the Mathematical Psychology Society and the American Psychological Association (Tversky & Kahneman, 1971) as discussed by the authors.
Abstract: The program of research now known as the heuristics and biases approach began with a survey of 84 participants at the 1969 meetings of the Mathematical Psychology Society and the American Psychological Association (Tversky & Kahneman, 1971). The respondents, including several authors of statistics texts, were asked realistic questions about the robustness of statistical estimates and the replicability of research results. The article commented tongue-in-heek on the prevalence of a belief that the law of large numbers applies to small numbers as well: Respondents placed too much confidence in the results of small samples, and their statistical judgments showed little sensitivity to sample size. The mathematical psychologists who participated in the survey not only should have known better – they did know better. Although their intuitive guesses were off the mark, most of them could have computed the correct answers on the back of an envelope. These sophisticated individuals apparently had access to two distinct approaches for answering statistical questions: one that is spontaneous, intuitive, effortless, and fast; and another that is deliberate, rule-governed, effortful, and slow. The persistence of large biases in the guesses of experts raised doubts about the educability of statistical intuitions. Moreover, it was known that the same biases affect choices in the real world, where researchers commonly select sample sizes that are too small to provide a fair test of their hypotheses (Cohen, 1969, 1992).

2,740 citations

Journal ArticleDOI
TL;DR: A new framework for a more adequate theoretical treatment of perception and action planning is proposed, in which perceptual contents and action plans are coded in a common representational medium by feature codes with distal reference, showing that the main assumptions are well supported by the data.
Abstract: Traditional approaches to human information processing tend to deal with perception and action planning in isolation, so that an adequate account of the perception-action interface is still missing On the perceptual side, the dominant cognitive view largely underestimates, and thus fails to account for, the impact of action-related processes on both the processing of perceptual information and on perceptual learning On the action side, most approaches conceive of action planning as a mere continuation of stimulus processing, thus failing to account for the goal-directedness of even the simplest reaction in an experimental task We propose a new framework for a more adequate theoretical treatment of perception and action planning, in which perceptual contents and action plans are coded in a common representational medium by feature codes with distal reference Perceived events (perceptions) and to-be-produced events (actions) are equally represented by integrated, task-tuned networks of feature codes – cognitive structures we call event codes We give an overview of evidence from a wide variety of empirical domains, such as spatial stimulus-response compatibility, sensorimotor synchronization, and ideomotor action, showing that our main assumptions are well supported by the data

2,736 citations

Trending Questions (1)
-What does speaking include?

Speaking includes constraints on appropriateness, articulation, and self-monitoring of speech. The book "Speaking: From Intention to Articulation" covers the entire speech production process comprehensively.