scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Special points for brillouin-zone integrations

15 Jun 1976-Physical Review B (American Physical Society)-Vol. 13, Iss: 12, pp 5188-5192
TL;DR: In this article, a method for generating sets of special points in the Brillouin zone which provides an efficient means of integrating periodic functions of the wave vector is given, where the integration can be over the entire zone or over specified portions thereof.
Abstract: A method is given for generating sets of special points in the Brillouin zone which provides an efficient means of integrating periodic functions of the wave vector. The integration can be over the entire Brillouin zone or over specified portions thereof. This method also has applications in spectral and density-of-state calculations. The relationships to the Chadi-Cohen and Gilat-Raubenheimer methods are indicated.
Citations
More filters
Journal ArticleDOI
TL;DR: The General Utility Lattice Program (GULP) as discussed by the authors has been extended to include the ability to simulate polymers and surfaces, as well as adding many other new features, and the current status of the program is fully documented.
Abstract: The General Utility Lattice Program (GULP) has been extended to include the ability to simulate polymers and surfaces, as well as adding many other new features, and the current status of the program is fully documented. Both the background theory is described, as well as providing a concise review of some of the previous applications in order to demonstrate the range of its use. Examples are presented of work performed using the new compatibilities of the software, including the calculation of Born effective charges, mechanical properties as a function of applied pressure, calculation of frequency-dependent dielectric data, surface reconstructions of calcite and the performance of a linear-scaling algorithm for bond-order potentials.

1,987 citations


Cites background from "Special points for brillouin-zone i..."

  • ...However, the most appropriate in general is usually the Monkhorst–Pack scheme [91]....

    [...]

Journal ArticleDOI
TL;DR: This work reports the first activation and optimization of the basal plane of monolayer 2H-MoS2 for HER by introducing sulphur (S) vacancies and strain, which allows it to achieve the highest intrinsic HER activity among molybdenum-sulphide-based catalysts.
Abstract: Molybdenum disulphide is a promising non-precious catalyst for hydrogen evolution because it contains active edge sites and an inert basal plane. Introducing sulphur vacancies and strain now leads to activation and optimization of the basal plane. As a promising non-precious catalyst for the hydrogen evolution reaction (HER; refs 1,2,3,4,5), molybdenum disulphide (MoS2) is known to contain active edge sites and an inert basal plane1,6,7,8. Activating the MoS2 basal plane could further enhance its HER activity but is not often a strategy for doing so. Herein, we report the first activation and optimization of the basal plane of monolayer 2H-MoS2 for HER by introducing sulphur (S) vacancies and strain. Our theoretical and experimental results show that the S-vacancies are new catalytic sites in the basal plane, where gap states around the Fermi level allow hydrogen to bind directly to exposed Mo atoms. The hydrogen adsorption free energy (ΔGH) can be further manipulated by straining the surface with S-vacancies, which fine-tunes the catalytic activity. Proper combinations of S-vacancy and strain yield the optimal ΔGH = 0 eV, which allows us to achieve the highest intrinsic HER activity among molybdenum-sulphide-based catalysts.

1,938 citations

Journal ArticleDOI
18 May 2012-Science
TL;DR: This work shows how to identify the crucial atomic structure motif for the industrial Cu/ZnO/Al2O3 methanol synthesis catalyst by using a combination of experimental evidence from bulk, surface-sensitive, and imaging methods collected on real high-performance catalytic systems in combination with density functional theory calculations.
Abstract: Unlike homogeneous catalysts, heterogeneous catalysts that have been optimized through decades are typically so complex and hard to characterize that the nature of the catalytically active site is not known. This is one of the main stumbling blocks in developing rational catalyst design strategies in heterogeneous catalysis. We show here how to identify the crucial atomic structure motif for the industrial Cu/ZnO/Al{sub 2}O{sub 3} methanol synthesis catalyst. Using a combination of experimental evidence from bulk-, surface-sensitive and imaging methods collected on real high-performance catalytic systems in combination with DFT calculations. We show that the active site consists of Cu steps peppered with Zn atoms, all stabilized by a series of well defined bulk defects and surface species that need jointly to be present for the system to work.

1,888 citations

Journal ArticleDOI
TL;DR: A detailed comparison of the performance of the HSE03 and PBE0 functionals for a set of archetypical solid state systems is presented, indicating that the hybrid functionals indeed often improve the description of these properties, but in several cases the results are not yet on par with standard gradient corrected functionals.
Abstract: Hybrid Fock exchange/density functional theory functionals have shown to be very successful in describing a wide range of molecular properties. For periodic systems, however, the long-range nature of the Fock exchange interaction and the resultant large computational requirements present a major drawback. This is especially true for metallic systems, which require a dense Brillouin zone sampling. Recently, a new hybrid functional [HSE03, J. Heyd, G. E. Scuseria, and M. Ernzerhof, J. Chem. Phys. 118, 8207 (2003)] that addresses this problem within the context of methods that evaluate the Fock exchange in real space was introduced. We discuss the advantages the HSE03 functional brings to methods that rely on a reciprocal space description of the Fock exchange interaction, e.g., all methods that use plane wave basis sets. Furthermore, we present a detailed comparison of the performance of the HSE03 and PBE0 functionals for a set of archetypical solid state systems by calculating lattice parameters, bulk moduli, heats of formation, and band gaps. The results indicate that the hybrid functionals indeed often improve the description of these properties, but in several cases the results are not yet on par with standard gradient corrected functionals. This concerns in particular metallic systems for which the bandwidth and exchange splitting are seriously overestimated.

1,875 citations

Journal ArticleDOI
TL;DR: The theoretical modeling of point defects in crystalline materials by means of electronic-structure calculations, with an emphasis on approaches based on density functional theory (DFT), is reviewed in this paper.
Abstract: Point defects and impurities strongly affect the physical properties of materials and have a decisive impact on their performance in applications. First-principles calculations have emerged as a powerful approach that complements experiments and can serve as a predictive tool in the identification and characterization of defects. The theoretical modeling of point defects in crystalline materials by means of electronic-structure calculations, with an emphasis on approaches based on density functional theory (DFT), is reviewed. A general thermodynamic formalism is laid down to investigate the physical properties of point defects independent of the materials class (semiconductors, insulators, and metals), indicating how the relevant thermodynamic quantities, such as formation energy, entropy, and excess volume, can be obtained from electronic structure calculations. Practical aspects such as the supercell approach and efficient strategies to extrapolate to the isolated-defect or dilute limit are discussed. Recent advances in tractable approximations to the exchange-correlation functional ($\mathrm{DFT}+U$, hybrid functionals) and approaches beyond DFT are highlighted. These advances have largely removed the long-standing uncertainty of defect formation energies in semiconductors and insulators due to the failure of standard DFT to reproduce band gaps. Two case studies illustrate how such calculations provide new insight into the physics and role of point defects in real materials.

1,846 citations