scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Spectral energy distributions and multiwavelength selection of type 1 quasars

TL;DR: In this article, the spectral energy distributions (SEDs) of 259 quasars with both Sloan Digital Sky Survey (SDS) and Spitzer photometry were analyzed.
Abstract: We present an analysis of the mid-infrared (MIR) and optical properties of type 1 (broad-line) quasars detected by the Spitzer Space Telescope. The MIR color-redshift relation is characterized to z ~ 3, with predictions to z = 7. We demonstrate how combining MIR and optical colors can yield even more efficient selection of active galactic nuclei (AGNs) than MIR or optical colors alone. Composite spectral energy distributions (SEDs) are constructed for 259 quasars with both Sloan Digital Sky Survey and Spitzer photometry, supplemented by near-IR, GALEX, VLA, and ROSAT data, where available. We discuss how the spectral diversity of quasars influences the determination of bolometric luminosities and accretion rates; assuming the mean SED can lead to errors as large as 50% for individual quasars when inferring a bolometric luminosity from an optical luminosity. Finally, we show that careful consideration of the shape of the mean quasar SED and its redshift dependence leads to a lower estimate of the fraction of reddened/obscured AGNs missed by optical surveys as compared to estimates derived from a single mean MIR to optical flux ratio.

Summary (2 min read)

3. MIR/OPTICAL COLORS OF TYPE 1 QUASARS

  • For the Spitzer color, the authors chose the two highest S/N bands (S3:6 and S4:5); this choice happens to produce the greatest separation of classes and has the added attraction that it does not rely on the longer wavelength bands that will be lost when Spitzer’s coolant runs out.
  • Judicious rotation of the axes in Figure 6 may allow for relatively clean AGN selection without having to rely on morphology information.
  • Quasars with z > 2:2 have redder optical colors even if they are not dust-reddened, and a large fraction of this population will still be identified by the SDSS quasar-selection algorithm.
  • A multidimensional MIR + optical Bayesian color-selection approach (Richards et al. 2004) that avoids any morphology bias may yield optimal completeness and efficiency for all AGN subclasses and will be the subject of future work.

4. THE OBSCURED QUASAR FRACTION

  • SinceMIR emission fromAGNs comes from larger scales and is thought to bemore isotropic than optical/UVemission, theMIR is an ideal part of the spectrum to constrain the fraction of quasars that are obscured (within the context of the so-called unifiedmodel; Antonucci 1993).
  • E.g., Polletta et al. 2000; Kuraszkiewicz et al. 2003; Risaliti & Elvis 2004), complete SEDs have been compiled for only a small number (P100) of quasars and the mean SED from Elvis et al. (1994) is arguably still the best description of the SED of quasars and is certainly the most commonly used.
  • To assess the importance of the host galaxy correction where it matters most, the authors determine the ratio of host galaxy to total luminosity at 1.6 m in the rest frame, where the elliptical template spectrum has its peak.
  • The standard deviation of the overall mean and the luminosity- and color-subdivided mean SEDs give the reader an idea of the range of SED shapes.
  • There are significant differences between the most and least optically luminous quasars in their sample.

6. BOLOMETRIC LUMINOSITIES AND ACCRETION RATES

  • The determinations of quasar physical parameters such as bolometric luminosity, black hole mass, and accretion rate have been revolutionized by two bodies of work from the past decade or so.
  • As discussed above, the biases inherent to the sample of objects used by Elvis et al. (1994) in addition to these authors’ warnings of the diversity of individual SEDs, coupled with the use of their mean SED as a single universal template, is what motivates this investigation.
  • It seems likely that the minimum in this region results from this region being a relative minimum in the combination of host galaxy contamination in the near-IR and dust extinction in the UV.
  • Figures 12 and 13 demonstrate that the smallest bolometric corrections and errors are found at optical wavelengths.
  • Clearly, if the authors are ever to understand the accretion rate distribution of quasars, they must either measure the bolometric luminosity directly or determine bolometric corrections to an accuracy better than that which is afforded by assuming the mean SED.

7. CONCLUSIONS

  • The authors have compiled a sample of 259 SDSS type 1 quasars with four-band Spitzer IRAC detections.
  • Figure 14 presents the individual SEDs of each of the 259 quasars in their sample.
  • The SDSS spectra are shown as solid black lines (smoothed by a 19 pixel boxcar).

Did you find this useful? Give us your feedback

Figures (16)

Content maybe subject to copyright    Report

SPECTRAL ENERGY DISTRIBUTIONS AND MULTIWAVELENGTH SELECTION OF TYPE 1 QUASARS
Gordon T. Richards,
1,2
Mark Lacy,
3
Lisa J. Storrie-Lombardi,
3
Patrick B. Hall,
4
S. C. Gallagher,
5
Dean C. Hines,
6
Xiaohui Fan,
7
Casey Papovich,
7
Daniel E. Vanden Berk,
8
George B. Trammell,
8
Donald P. Schneider,
8
Marianne Vestergaard,
7
Donald G. York,
9,10
Sebastian Jester,
11, 12
Scott F. Anderson,
13
Tama
´
sBudava
´
ri,
2
and Alexander S. Szalay
2
Received 2006 January 24; accepted 2006 May 26
ABSTRACT
We present an analysis of the mid-infrared ( MIR) and optical properties of type 1 (broad-line) quasars detected by
the Spitzer Space Telescope. The MIR color-redshift relation is characterized to z 3, with predictions to z ¼ 7. We
demonstrate how combining MIR and optical colors can yield even more efficient selection of active galactic nuclei
(AGNs) than MIR or optical colors alone. Composite spectral energy distributions (SEDs) are constructed for 259
quasars with both Sloan Digital Sky Survey and Spitzer photometry, supplemented by near-IR, GALEX, VLA, and
ROSAT data, where available. We discuss how the spectral diversity of quasars influences the determination of bolo-
metric luminosities and accretion rates; assuming the mean SED can lead to errors as large as 50% for individual quasars
when inferring a bolometric luminosity from an optical luminosity. Finally, we show that careful consideration of the
shape of the mean quasar SED and its redshift dependence leads to a lower estimate of the fraction of reddened / obscured
AGNs missed by optical surveys as compared to estimates derived from a single mean MIR to optical flux ratio.
Subject h eadinggs: catalogs galaxies: active infrared: galaxies quasars: general radio continuum: galaxies
surveys ultraviolet: galaxies X-rays: galaxies
Online material: machine-readable tables
1. INTROD UCTION
Access to the mid-infrared ( MIR) region opens up new realms
for quasar science as we are able to study large numbers of ob-
jects with high signal-to-noise ratio data in this bolometrically
important band for the first time. At least four distinct energy gen-
eration mechanisms are at work in active galactic nuclei (AGNs)
from jets in the radio, dust in the IR, accretion disks in the optical
UVsoftX-ray, and Compton upscattering in hot coronae in the
hard X-ray. All of these spectral regions need to be sampled with
high precision if we are to understand the physical processes
governing AGN emission. The Spitzer Space Telescope (Werner
et al. 2004) allows the first robust glimpse of the physics of the
putative dusty torus in AGNs out to z 23 and makes it pos-
sible to compare high-quality mid-IR data to the expectations of
the latest models (e.g., Nenkova et al. 2002; Dullemond & van
Bemmel 2005; Fritz et al. 2006).
MIR photometry from Spitzer has provided a better census of
active nuclei in galaxies than has been previously possible (e.g.,
Lacy et al. 2004). Optical surveys are biased against heavily
reddened and obscured objects, and even X-ray surveys may fail
to uncover Compton-thick sources (e.g., Treister et al. 2006).
Thus, the MIR presents an attractive window for determining the
black hole accretion history of the universe. To that end, Spitzer
will be of considerable utility in helping to decipher the nature of
the M
BH
- relation (e.g., Tremaine et al. 2002), in terms of mak-
ing a complete census of AGNs—a necessary condition for a full
understanding of the physical relationship between black holes
and their host galaxies.
High-sensitivity, high-accuracy MIR photometry also fills a
huge gap in our knowledge of the overall spectral energy dis-
tribution (SED) of AGNs, which now lacks only detailed far-IR/
centimeter and extreme-UV meas urements for a large sample of
quasars. Without the mid-IR data, we have been forced to rely on
the mean properties of a few dozen of the brightest quasars (e.g.,
Elvis et al. 1994) to estimate bolometric luminosities (and, in turn,
Eddington masses and accretion rates) for quasars. Since the 1
100 m part of the spectrum contributes nearly 40% of the bolo-
metric luminosity, this added knowledge represents a significant
gain in our ability to explore the properties of AGNs as a function
of the bolometric luminosity.
This paper builds on and extends the results from recent pa-
pers describing the Spitzer MIR color distribution of AGNs.
Lacy et al. (2004) showed that MIR colors alone can be used to
select AGNs with both high efficiency and completeness, includ-
ing both dust-reddened and optically obscured (type 2) AGNs
that may otherwise be overlooked by optical selection techniques.
We will show that the addition of optical colors and morphology
can be used to improve the MIR-only selection efficiency of type 1
quasars (including those that are moderately reddened).
A
1
Princeton University Observatory, Peyton Hall, Princeton, NJ 08544.
2
Department of Physics and Astronomy, The Johns Hopkins University,
3400 North Charles Street, Baltimore, MD 21218-2686.
3
Spitzer Science Center, California Institute of Technology, Mail Code 220-6,
Pasadena, CA 91125.
4
Department of Physics and Astronomy, York University, 4700 Keele Street,
Toronto, ON M3J 1P3, Canada.
5
Department of Physics and Astronomy, UCLA, Mail Code 154705, 475
Portola Plaza, Los Angeles, CA 90095.
6
Space Science Institute, 4750 Walnut Street, Suite 205, Boulder, CO 80301.
7
Steward Observatory, University of Arizona, 933 North Cherry Avenue,
Tucson, AZ 85721.
8
Department of Astronomy and Astrophysics, Pennsylvania State Univer-
sity, 525 Davey Laboratory, University Park, PA 16802.
9
Department of Astronomy and Astrophysics, University of Chicago, 5640
South Ellis Avenue, Chicago, IL 60637.
10
Enrico Fermi Institute, University of Chicago, 5640 South Ellis Avenue,
Chicago, IL 60637.
11
Fermi National Accelerator Laboratory, P.O. Box 500, Batavia, IL 60510.
12
School of Physics and Astronomy, Southampton University, Southampton
SO17 1BJ, UK.
13
Department of Astronomy, University of Washington, Box 351580, Seattle,
WA 9 8 1 9 5.
470
The Astrophysical Journal Supplement Series, 166:470497, 2006 October
# 2006. The American Astronomical Society. All rights reserved. Printed in U.S.A.

Stern et al. (2005) also describe a MIR selection technique for
AGNs, making statistical arguments that the obscured AGN frac-
tion may be as high as 76%. We reconsider their argument in light
of the influence that the shape of the mean quasar spectral energy
distribution (SED) has on determining the obscured quasar frac-
tion. Such considerations allow us to demonstrate that the true ob-
scured AGN fraction must be lower than that determined by Stern
et al. (2005).
Finally, Hatziminaoglou et al. (2005) investigated the combined
optical + MIR color distribution of quasars by combining data
from the ELAIS-N1 field in the Spitzer Wide-Area Infrared Extra-
galactic Survey (SWIRE; Lonsdale et al. 2003) with data from the
Sloan Digital Sky Survey (SDSS; York et al. 2000). Using the data
from 35 SDSS quasars they determine the mean optical-MIR SED
of type 1 quasars and investigate their mass and bolometric lumi-
nosity distribution. We expand on these results by determining a
number of different ‘mean’ SEDs as a function of color and lumi-
nosity for 259 SDSS quasars in the Spitzer Extragalactic First Look
Survey
14
(XFLS), SWIRE
15
ELAIS-N1/N2, and SWIRE Lockman
Hole areas. We use these SEDs to demonstrate that the diversity of
quasar SEDs must be considered when determining bolometric
luminosities and accretion rates for individual quasarsas was
emphasized in the seminal SED work of Elvis et al. (1994).
Section 2 reviews the data sets used in our analysis. In x 3we
explore the MIR color-redshift relation and MIR-optical color-
color space occupied by type 1 quasar s. In addition to showing
these relations for the data, we also show the predicted relations
derived from two quasar SEDs convolved with the SDSS and
Spitzer filters curves : one SED derived largely from broadband
photometry ( Elvis et al. 1994), the other from a mean optical +
IR spectral template (Glikman et al. 2006). Section 4 presents a
brief discussion of the determination of the type 1 to type 2 ratio
of quasars. In x 5 we discuss the radio through X-ray SED of qua-
sars and construct new MIR-optical templates from our sample.
We present an overall mean SED along with mean SEDs for sub-
sets of optically luminous/dim, MIR luminous/dim, and optically
blue/red quasars in order to explor e how different optical/MIR
properties are related to the overall SED. Section 6 discusses the
implications of our new SED templates on the determination of
bolometric luminosities and accretion rates. Our conclusions are
presented in x 7.
Throughout this paper we will distinguish between normal
type 1 quasars, dust-reddened/extincted type 1 quasars, and type 2
quasars. By ‘type 1 quasars,’ we mean those quasars having broad
lines and optical colors/ spectral indices that are roughly consistent
with a Gaussian spectral index distribution of
¼0:5 0:3
( f
/
). Red dened type 1 quasars are those quas ars that have
broad lines but have spectral indices that are redder than about
¼1 (e.g., Gregg et al. 2002). Optical surveys can find such
quasars up to E(B V ) 0:5butareincreasinglyincomplete
above E(B V ) 0:1 (Richards et al. 2003). By type 2 quasars,
we mean those that lack rest-frame optical/UV broad emission
lines and have nuclei that are completely obscured in the optical
such that the optical colors are consistent with the host galaxy.
Throughout this paper we use a CDM cosmology with H
0
¼
70 km s
1
Mpc
1
,
¼ 0:7, and
m
¼ 0:3, consistent with the
WMAP cosmology (Spergel et al. 2003, 2006).
2. THE DATA
We investigate the mid-IR and optical properties of type 1
quasars that are detected in both the SDSS and in all four bands
of the Spitzer Infrared Array Camera ( IRAC; Fazio et al. 2004).
The Spitzer data are taken from the XFLS and SWIRE ELAIS-N1,
ELAIS-N2, and Lockman Hole areas, which have (R.A., decl.)
centers of (259N5, 59N5), (242N75, 55N0), (249N2, 41N029), and
(161N25, 58N0), respectively.
We begin with SDSS-DR3 type 1 quasars cataloged by
Schneider et al. (2005), the majority of which were selected by
the algorithm given by Richards et al. (2002). This catalog in-
cludes matches to the FIRST (Becker et al. 1995) survey with the
VLA, ROSAT ( Voges et al. 2000), and 2MASS (Skrutskie et al.
1997). For a definition of the SDSS photometric system, see
Fukugita et al. (1996); Adelman-McCarthy et al. (2006) provide
a description of the latest SDSS data release (DR4). All SDSS
magnitudes have been corrected for Galactic extinction accord-
ing to Schlegel et al. (1998).
The 46,420 SDSS quasars of Schneider et al. (2005) are
matched to IRAC detections in the XFLS (main
_
4band.cat;
Lacy et al. 2005b) and the SWIRE ELAIS-N1, -N2, and Lockman
Hole (SWIRE2
_
N1
_
cat
_
IRAC24
_
16jun05.tbl, SWIRE2
_
N2
_
cat
_
IRAC24
_
16jun05.tb l, SWIRE2
_
Lockman
_
cat
_
IRAC24
_
10Nov05.tbl; Surace et al. 2005) areas of sky. The IRAC band-
passes are generally referred to as channels 1 through 4 or as the
3.6, 4.5, 5.8 , and 8.0 m bands, respectively. For a quasar spec-
trum with MIR spectral index of
¼1(f
/
), the effec-
tive wavelengths of the IRAC bandpasses are actually closer to
3.52, 4.46, 5.67, and 7.70 m. The SWIRE catalogs also include
24 m photometry from the Multiband Imaging Photometer for
Spitzer (MIPS; Rieke et al. 2004). In the XFLS field, 24 m
sources are cataloged by Fadda et al. (2006) and we include
matches from that catalog as well. As the limits of the mid-IR
catalogs are much deeper than the SDSS spectroscopic survey,
we consider only objects detected in all four IRAC bands. Within
a matching radius of 1B0 there are 44 SDSS-DR3 quasar matches
in the XFLS area, 29 in the ELAIS-N1 area, 44 in the ELAIS-N2
area, and 142 in the Lockman Hole area. All but one of the op-
tically selected SDSS quasars has four-band IRAC coverage in
the regions of overlap between the SDSS and Spitzer data; see
Figures 1 and 2. The ex ception is SDSS J104413.47 +580858. 9
(z ¼ 3:7), which has only a limit in IRAC channel 3.
To construct the most detailed quasar spectral energy distribu-
tions (SEDs) possible, we include data available at other wave-
lengths. We include matches to MIPS 70 m sources in the XFLS
(FLS70
_
sn7
_
jul05.txt; Frayer et al. 2006) and in the SWIRE
(SWIRE2
_
EN1
_
70um_23nov05.tbl, SWIRE2
_
EN2
_
70um
_
23nov05.tbl, SWIRE3
_
Lockman
_
70um
_
23nov05.tbl; Surace
et al. 2005) areas. No MIPS 160 m data are included as the
flux density limits of these data in the XFLS and SWIRE areas
are much brighter than expected flux densities of even the bright-
est SDSS-DR3 quasars in these fields. For the SDSS quasars in
the ELAIS fields we have extracted 15 mphotometryfromthe
Rowan-Robinson et al. (2004) catalog. We also extract J /H/K and
radio information from this catalog if that information was not
otherwise available.
Some of these areas of sky have been observed by GALEX
(Martin et al. 2005), and the data were released as part of GALEX
GR1. Quasars are readily detected by GALEX (see Bianchi et al.
2005 and Seibert et al. 2005); thus, we also include GALE X pho-
tometry where available. Matc hing of the GALEX catalogs and
the SDSS DR3 quasar sample is described by Trammell et al.
(2005). The effective wavelengths of the GALEX NUV and
FUV bandpasses (hereafter referred to as n and f magnitudes)
are 2267 and 1516 8. GALEX photometry has been corrected
for Galactic extinction assuming A
n
/E(B V ) ¼ 8:741 and
A
f
/E(B V ) ¼ 8:376 (Wyder et al. 2005). A total of 55 and 88
14
See http://ssc.spitzer.ca ltech.edu/fls/.
15
See http://swire.ipac.caltech.edu/swire/.
SEDs OF TYPE 1 QUASARS 471

of the DR3 quasars have GALEX detections in the f and n bands,
respectively.
In the radio, we have matched to the deeper VLA data taken in
the XFLS area by Condon et al. (2003), which catalogs 5 de-
tections with fluxes higher than 115 Jy (about an order of mag-
nitude deeper than FIRST). Deep VLA data also exists for the
ELAIS and Lockman Hole areas, but only over a small area of
sky (e.g., Ciliegi et al. 1999, 2003).
Most of our objects are fainter than the 2MASS (Skrutskie
et al. 1997) limits, but we have supplemental near-IR data for a
few. Near-IR (JHK
s
) magnitudes for SDSS J1716+5902 were ob-
tained on 2003 September 9 UT using the GRIM II instrument on
the Apache Point Observatory 3.5 m telescope. Dithered images
were obtained and reduced in the standard fashion, using running
flat-fielding and sky-subtraction (e.g., Hall et al. 1998) with all
available good images in a given filter for each object. Four
other sources (SDSS J171732.94+59474 7.5, SDSS J171736.90+
593011.4, SDSS J171748.43+594820.6, and SDSS J171831.73+
595309.4) were observed at Palomar Observatory.
Finally, to better characterize the optical + MIR color distri-
bution of type 1 quasars, we include 87 broadline quasars that are
fainter than the SDSS spectroscopic magnitude limit, but that
Fig. 2.—Location of SDSS-DR3 quasars in the SWIRE ELAIS N1 (left)andN2(right) fields. Red points indicate four-band IRAC sources. Blue points indicate
MIPS 70 m sources. Open triangles indicate SDSS-DR3 quasars. Green circles indicate SDSS-DR3 quasars with IRAC detections in all four bands.
Fig. 1.—Location of SDSS-DR3 quasars in the XFLS (left) and SWIRE Lockman Hole (right) fields. Red, yellow, and blue points represent IRAC, IRAC
verification, and MIPS70 sources, respectively. Open triangles represen t SDSS-DR3 quasars. Green circles represent SDSS-DR3 quasars with IRAC detections in all
four bands. Open pentagons indicate GALEX-detected SDSS quasars.
RICHARDS ET AL.472 Vol. 166

TABLE 1
SDSS-Spitzer Quasar Photometry I
Name (SDSS J) z
em
L
bol
a
log (ergs s
1
)
L
opt
b
log (ergs s
1
)
L
ir
c
log (ergs s
1
)BC
a
X-Ray
log (counts s
1
)
f
(AB mag)
n
(AB mag)
u
(AB mag)
g
(AB mag)
r
(AB mag)
i
(AB mag)
z
(AB mag)
105705.39+580437.4 .......... 0.140 45.06 44.49 44.78 10.60 0.708 18.31 0.08 18.15 0.04 17.92 0.03 17.61 0.05 17.25 0.02 16.83 0.02 16.56 0.04
171902.28+593715.9 .......... 0.178 45.21 44.74 44.93 9.41 1.221 18.10 0.01 17.99 0.01 17.49 0.02 17.50 0.02 17.36 0.02 17.06 0.02 17.20 0.02
160655.34+534016.8 .......... 0.214 45.13 44.45 44.91 11.87 ... ... ... 18.85 0.03 18.71 0.02 18.22 0.02 17.86 0.02 17.91 0.03
163111.28+404805.2........... 0.258 45.68 45.27 45.19 9.84 0.551 ... ... 16.98 0.01 17.05 0.02 17.08 0.01 17.10 0.01 16.86 0.01
171207.44+584754.4 .......... 0.269 45.49 45.06 45.12 12.29 1.235 17.97 0.01 18.08 0.01 17.83 0.02 17.93 0.02 17.88 0.02 17.94 0.02 17.51 0.02
171033.21+584456.8 .......... 0.281 45.15 44.46 44.95 10.44 ... 20.59 0.04 20.06 0.02 19.58 0.03 19.25 0.03 18.70 0.02 18.52 0.02 18.10 0.03
105644.52+572233.4 .......... 0.286 45.08 44.53 44.78 10.12 ... ... ... 19.36 0.03 19.26 0.02 18.88 0.02 18.69 0.02 18.32 0.02
104739.49+563507.2 .......... 0.303 45.19 44.66 44.88 9.82 ... ... ... 19.16 0.04 19.02 0.04 18.72 0.04 18.57 0.03 18.20 0.03
155936.13+544203.8 .......... 0.308 45.42 44.87 45.15 11.75 ... ... ... 18.55 0.03 18.42 0.04 18.27 0.02 18.38 0.03 17.87 0.03
105626.96+580843.1 .......... 0.342 45.29 44.66 45.03 8.40 ... ... 21.50 0.20 19.45 0.03 18.95 0.02 18.57 0.03 18.46 0.02 17.88 0.02
Note.—Table 1 is available in its entirety in the electronic edition of the Astrophysical Journal Supplement. A portion is shown her e for guidance regarding its form and content.
a
Bolometric (100 m to 10 keV) luminosity and bolometric correction (from 5100 8).
b
1–0.1 m integrated luminosity.
c
1001 m integrated luminosity.

TABLE 2
SDSS-Spitzer Quasar Photometry II
Name (SDSS J) J (Vega) H (Vega) K (Vega)
S
3:6
(Jy)
S
4:5
(Jy)
S
5:8
(Jy)
S
8:0
(Jy)
S
15
(mJy)
S
24
(mJy)
S
70
(mJy)
Radio
(mJy)
L
rad
log (ergs s
1
Hz
1
)
105705.39+580437.4 ........... 14.99 0.08 14.21 0.09 13.48 0.07 2351.5 5.6 2366.9 7.3 2838.0 15.1 6273.4 16.1 ... 16.61 0.02 98.0 0.6 ... <29.69
171902.28+593715.9 ........... 15.89 0.09 15.02 0.09 14.15 0.06 2925.1 293.1 4095.1 409.8 5365.6 541.1 7193.8 720.4 ... 26.91 0.04 22.9 4.0 0.23 29.28
160655.34+534016.8 ........... 16.37 0.10 15.33 0.11 14.32 0.07 1396.7 4.6 1657.2 5.7 2047.6 14.1 2973.1 10.9 7.72 14.80 0.02 37.7 1.6 ... <30.09
163111.28+404805.2............ 16.24 0.10 15.45 0.12 14.48 0.09 2729.7 5.0 3632.2 6.6 4686.4 15.1 6218.9 11.9 ... 16.90 0.03 ... ... <30.26
171207.44+584754.4 ........... 16.26 0.10 15.36 0.09 14.61 0.10 2024.6 203.1 2411.9 242.2 3162.9 321.5 4353.7 437.9 ... 13.34 0.07 ... 0.14 29.45
171033.21+584456.8 ........... 16.90 0.18 15.68 0.11 14.96 0.10 589.2 59.9 708.4 71.8 709.8 78.1 1571.6 159.5 ... 6.06 0.07 44.0 8.0 ... <30.34
105644.52+572233.4 ........... 16.71 0.10 16.33 0.27 15.10 0.12 1161.4 4.4 1280.1 5.2 1417.1 13.2 1742.5 9.7 ... 3.18 0.02 ... ... <30.36
104739.49+563507.2 ........... 16.63 0.16 16.24 0.24 15.51 0.18 572.2 2.6 671.2 2.6 886.3 10.7 1566.3 6.5 ... 8.61 0.02 ... ... <30.41
155936.13+544203.8 ........... 16.61 0.20 16.77 0.10 14.92 0.16 1093.4 2.6 1437.4 3.8 1997.8 8.6 3268.1 8.7 ... 14.59 0.02 ... 3.40 30.96
105626.96+580843.1 ........... 16.74 0.17 16.25 0.27 15.42 0.16 1362.5 5.2 1660.5 4.9 1975.0 15.5 2303.3 9.0 ... 4.23 0.02 ... ... <30.53
Note.—Table 2 is available in its entirety in the electronic edition of the Astrophysical Journal Supplement. A portion is shown her e for guidance regarding its form and content.

Citations
More filters
Journal ArticleDOI
TL;DR: In this paper, a model for the cosmological role of mergers in the evolution of starbursts, quasars, and spheroidal galaxies is proposed.
Abstract: We develop a model for the cosmological role of mergers in the evolution of starbursts, quasars, and spheroidal galaxies. By combining theoretically well-constrained halo and subhalo mass functions as a function of redshift and environment with empirical halo occupation models, we can estimate where galaxies of given properties live at a particular epoch. This allows us to calculate, in an a priori cosmological manner, where major galaxy-galaxy mergers occur and what kinds of galaxies merge, at all redshifts. We compare this with the observed mass functions, clustering, fractions as a function of halo and galaxy mass, and small-scale environments of mergers, and we show that this approach yields robust estimates in good agreement with observations and can be extended to predict detailed properties of mergers. Making the simple Ansatz that major, gas-rich mergers cause quasar activity (but not strictly assuming they are the only triggering mechanism), we demonstrate that this model naturally reproduces the observed rise and fall of the quasar luminosity density at -->z = 0–6, as well as quasar luminosity functions, fractions, host galaxy colors, and clustering as a function of redshift and luminosity. The recent observed excess of quasar clustering on small scales at -->z ~ 0.2–2.5 is a natural prediction of our model, as mergers will preferentially occur in regions with excess small-scale galaxy overdensities. In fact, we demonstrate that quasar environments at all observed redshifts correspond closely to the empirically determined small group scale, where major mergers of ~L* gas-rich galaxies will be most efficient. We contrast this with a secular model in which quasar activity is driven by bars or other disk instabilities, and we show that, while these modes of fueling probably dominate the high Eddington ratio population at Seyfert luminosities (significant at -->z = 0), the constraints from quasar clustering, observed pseudobulge populations, and disk mass functions suggest that they are a small contributor to the -->z 1 quasar luminosity density, which is dominated by massive BHs in predominantly classical spheroids formed in mergers. Similarly, low-luminosity Seyferts do not show a clustering excess on small scales, in agreement with the natural prediction of secular models, but bright quasars at all redshifts do so. We also compare recent observations of the colors of quasar host galaxies and show that these correspond to the colors of recent merger remnants, in the transition region between the blue cloud and the red sequence, and are distinct from the colors of systems with observed bars or strong disk instabilities. Even the most extreme secular models, in which all bulge (and therefore BH) formation proceeds via disk instability, are forced to assume that this instability acts before the (dynamically inevitable) mergers, and therefore predict a history for the quasar luminosity density that is shifted to earlier times, in disagreement with observations. Our model provides a powerful means to predict the abundance and nature of mergers and to contrast cosmologically motivated predictions of merger products such as starbursts and active galactic nuclei.

1,495 citations


Cites background or result from "Spectral energy distributions and m..."

  • ...As a relatively short phase, such objects constitute only∼ 20− 40% of the quasar population, similar to that observed (Gregg et al. 2002; White et al. 2003; Richards et al. 2003, 2006a; Hopkins et al. 2004)....

    [...]

  • ...…luminosity density (and especially the number density of bright quasars corresponding to& 108M⊙ BHs at high Eddington ratio; see Fan et al. 2004; Richards et al. 2006b) declines rapidly at z & 2 − 3 (roughly as∼ (1+ z)4−6), compared to the global star formation rate density of the Universe,…...

    [...]

Journal ArticleDOI
TL;DR: In this paper, the authors present a compilation of properties of 105,783 quasars in the Sloan Digital Sky Survey Data Release 7 (DR7) quasar catalog, including radio properties, and flags indicating broad absorption line properties.
Abstract: We present a compilation of properties of the 105,783 quasars in the Sloan Digital Sky Survey Data Release 7 (DR7) quasar catalog. In this product, we compile continuum and emission line measurements around the Hα, Hβ, Mg II, and C IV regions, as well as other quantities such as radio properties, and flags indicating broad absorption line quasars, disk emitters, etc. We also compile virial black hole mass estimates based on various calibrations. For the fiducial virial mass estimates we use the Vestergaard & Peterson (VP06) calibrations for Hβ and C IV, and our own calibration for Mg II which matches the VP06 Hβ masses on average. We describe the construction of this catalog and discuss its limitations. The catalog and its future updates will be made publicly available online.

1,486 citations

Journal ArticleDOI
TL;DR: In this paper, the authors combine a large set of quasar luminosity function (QLF) measurements from the rest-frame optical, soft and hard X-ray, and near and mid-IR bands to determine the bolometric QLF in the redshift interval z = 0-6.
Abstract: We combine a large set of quasar luminosity function (QLF) measurements from the rest-frame optical, soft and hard X-ray, and near- and mid-IR bands to determine the bolometric QLF in the redshift interval z = 0-6. Accounting for the observed distributions of quasar column densities and variation of SED shapes, as well as their dependence on luminosity, makes it possible to integrate the observations in a reliable manner and provides a baseline in redshift and luminosity larger than that of any individual survey. We infer the QLF break luminosity and faint-end slope out to z ~ 4.5 and confirm at high significance (10 σ) previous claims of a flattening in both the faint- and bright-end slopes with redshift. With the best-fit estimates of the column density distribution and quasar SED, which both depend on luminosity, a single bolometric QLF self-consistently reproduces the observed QLFs in all bands and at all redshifts for which we compile measurements. Ignoring this luminosity dependence does not yield a self-consistent bolometric QLF and there is no evidence for any additional dependence on redshift. We calculate the expected relic black hole mass function and mass density, cosmic X-ray background, and ionization rate as a function of redshift and find that they are consistent with existing measurements. The peak in the total quasar luminosity density is well constrained at z = 2.15 ± 0.05. We provide a number of fitting functions to the bolometric QLF and its manifestations in various bands, as well as a script to return the QLF at arbitrary frequency and redshift from these fits.

1,163 citations


Cites background or methods or result from "Spectral energy distributions and m..."

  • ...…it produces good agreement with the distribution of Compton-thick column densities subsequently reported by Treister et al. (2004), Mainieri et al. (2005), and Tozzi et al. (2006) and is consistent with upper limits to the obscured fraction from the mid-IR observations of Richards et al. (2006c)....

    [...]

  • ...…fitted luminosity function outside of its measured luminosity and redshift range can be inaccurate by orders of magnitude (see, e.g. Figure 19 of Richards et al. (2006b)), and we have demonstrated the importance of accounting for the detailed luminosity dependence of quasar SEDs and obscuration....

    [...]

  • ...Figure 1 shows these corrections as a function of luminosity, which agree broadly with the values in e.g. Richards et al. (2006c) over the luminosity range they consider....

    [...]

  • ...…the brightend slope of the QLF appears to become shallower towards higher redshifts, from both direct measurements (Fan et al. 2001b, 2003; Richards et al. 2006b) and (albeit weaker) constraints from gravitational lensing (Comerford et al. 200 ; Wyithe & Loeb 2002; Wyithe 2004; Richards…...

    [...]

  • ...…brightend slope of the QLF appears to become shallower towards higher redshifts, from both direct measurements (Fan et al. 2001b, 2003; Richards et al. 2006b) and (albeit weaker) constraints from gravitational lensing (Comerford et al. 200 ; Wyithe & Loeb 2002; Wyithe 2004; Richards et al. 2006a)....

    [...]

Journal ArticleDOI
TL;DR: In this paper, the authors present a picture in which the population of active galactic nuclei (AGNs) can be divided into two distinct populations: radiative-mode AGNs are associated with black holes that produce radiant energy powered by accretion at rates in excess of ∼ 1% of the Eddington limit.
Abstract: We summarize what large surveys of the contemporary Universe have taught us about the physics and phenomenology of the processes that link the formation and evolution of galaxies with their central supermassive black holes. We present a picture in which the population of active galactic nuclei (AGNs) can be divided into two distinct populations. The radiative-mode AGNs are associated with black holes (BHs) that produce radiant energy powered by accretion at rates in excess of ∼1% of the Eddington limit. They are primarily associated with less massive BHs growing in high-density pseudobulges at a rate sufficient to produce the total mass budget in these BHs in ∼10 Gyr. The circumnuclear environment contains high-density cold gas and associated star formation. Major mergers are not the primary mechanism for transporting this gas inward; secular processes appear dominant. Stellar feedback is generic in these objects, and strong AGN feedback is seen only in the most powerful AGNs. In jet-mode AGNs the bulk of...

898 citations


Cites methods from "Spectral energy distributions and m..."

  • ...Nonetheless, a number of different techniques based on near- and mid-IR color selection were developed to find AGN using Spitzer data (e.g. Lacy et al. 2004, Stern et al. 2005, Richards et al. 2006, Donley et al. 2008)....

    [...]

Journal ArticleDOI
25 Jan 2018-Nature
TL;DR: Strong evidence of absorption of the spectrum of the quasar redwards of the Lyman α emission line (the Gunn–Peterson damping wing), as would be expected if a significant amount of the hydrogen in the intergalactic medium surrounding J1342 + 0928 is neutral, and a significant fraction of neutral hydrogen is derived, although the exact fraction depends on the modelling.
Abstract: Observations of a quasar at redshift 7.54, when the Universe was just five per cent of its current age, suggest that the Universe was significantly neutral at this epoch. Despite extensive searches, only one quasar has been known at redshifts greater than 7, at 7.09. Eduardo Banados and colleagues report observations of a quasar at a redshift of 7.54, when the Universe was just 690 million years old, with a black-hole mass 800 million times the mass of the Sun. The spectrum shows that the quasar's Lyman α emission is being substantially absorbed by an intergalactic medium containing significantly neutral hydrogen, indicating that reionization was not complete at that epoch. Quasars are the most luminous non-transient objects known and as a result they enable studies of the Universe at the earliest cosmic epochs. Despite extensive efforts, however, the quasar ULAS J1120 + 0641 at redshift z = 7.09 has remained the only one known at z > 7 for more than half a decade1. Here we report observations of the quasar ULAS J134208.10 + 092838.61 (hereafter J1342 + 0928) at redshift z = 7.54. This quasar has a bolometric luminosity of 4 × 1013 times the luminosity of the Sun and a black-hole mass of 8 × 108 solar masses. The existence of this supermassive black hole when the Universe was only 690 million years old—just five per cent of its current age—reinforces models of early black-hole growth that allow black holes with initial masses of more than about 104 solar masses2,3 or episodic hyper-Eddington accretion4,5. We see strong evidence of absorption of the spectrum of the quasar redwards of the Lyman α emission line (the Gunn–Peterson damping wing), as would be expected if a significant amount (more than 10 per cent) of the hydrogen in the intergalactic medium surrounding J1342 + 0928 is neutral. We derive such a significant fraction of neutral hydrogen, although the exact fraction depends on the modelling. However, even in our most conservative analysis we find a fraction of more than 0.33 (0.11) at 68 per cent (95 per cent) probability, indicating that we are probing well within the reionization epoch of the Universe.

857 citations

References
More filters
Journal ArticleDOI
TL;DR: The First-Look Survey (FLS) of the Space Infrared Telescope Facility (SIRTF) will cover about 5 deg^2 centered on J20000 α = 17^h18^m, δ = +59°30' in order to characterize the extragalactic infrared sky 2 orders of magnitude deeper than the IRAS survey as mentioned in this paper.
Abstract: The First-Look Survey (FLS) of the Space Infrared Telescope Facility (SIRTF) will cover about 5 deg^2 centered on J20000 α = 17^h18^m, δ = +59°30' in order to characterize the extragalactic infrared sky 2 orders of magnitude deeper than the IRAS survey We expect that most of the FLS far-infrared (λ = 160, 70, and 24 μm) sources will be star-forming galaxies obeying the very tight far-infrared/radio correlation and will be continuum radio sources with flux densities S ≳100 μJy at ν = 14 GHz Conversely, radio sources stronger than 100 μJy are usually powered by star-forming galaxies, plus some active galactic nuclei, and most should be detectable by the SIRTF FLS Thus, a sensitive radio survey can be used to select and identify most of the SIRTF FLS source population before launch We used the B configuration of the VLA to make an image of the FLS area at ν = 14 GHz with σ ≈ 23 μJy beam^(-1) rms fluctuations, θ = 5”0 resolution, and σ_α ≈ σδ ≾0”5 rms uncertainties in right ascension and declination The resulting radio image and catalog of 3565 radio components with peak flux densities S_p ≥ 5 σ = 115 μJy beam^(-1) have been released via the Web to expedite follow-up optical identification and spectroscopy

101 citations


"Spectral energy distributions and m..." refers background or methods in this paper

  • ...In the XFLS field, 24 m sources are cataloged by Fadda et al. (2006) and we include matches from that catalog as well....

    [...]

  • ...…dependent on a lack of evolution in the distribution of the ratio of radio to optical luminosities of quasars from low to high redshifts, as the majority of high-redshift quasars are expected to have much lower radio luminosities than probed by the radio survey of the XFLS by Condon et al. (2003)....

    [...]

  • ...We include matches toMIPS 70 m sources in the XFLS (FLS70_sn7_ jul05.txt; Frayer et al. 2006) and in the SWIRE (SWIRE2_EN1_70um_23nov05.tbl, SWIRE2_EN2_70um_ 23nov05.tbl, SWIRE3_Lockman_70um_23nov05.tbl; Surace et al. 2005) areas....

    [...]

  • ...Within a matching radius of 1B0 there are 44 SDSS-DR3 quasar matches in the XFLS area, 29 in the ELAIS-N1 area, 44 in the ELAIS-N2 area, and 142 in the Lockman Hole area....

    [...]

  • ...We expand on these results by determining a number of different ‘‘mean’’ SEDs as a function of color and luminosity for 259SDSSquasars in the SpitzerExtragalactic First Look Survey14 (XFLS), SWIRE15ELAIS-N1/N2, andSWIRELockman Hole areas....

    [...]

Journal ArticleDOI
TL;DR: In this article, an empirical algorithm for obtaining photometric redshifts of quasars using five-band Sloan Digital Sky Survey (SDSS) photometry is presented. But the method is restricted to a few well-defined values.
Abstract: We present an empirical algorithm for obtaining photometric redshifts of quasars using five-band Sloan Digital Sky Survey (SDSS) photometry. Our algorithm generates an empirical model of the quasar color-redshift relation, compares the colors of a quasar candidate with this model, and calculates possible photometric redshifts. Using the 3814 quasars of the SDSS Early Data Release (EDR) Quasar Catalog to generate a median color-redshift relation as a function of redshift we find that, for this same sample, 83% of our predicted redshifts are correct to within |Δz| < 0.3. The algorithm also determines the probability that the redshift is correct, allowing for even more robust photometric redshift determination for smaller, more restricted samples. We apply this technique to a set of 8740 quasar candidates selected by the final version of the SDSS quasar-selection algorithm. The photometric redshifts assigned to nonquasars are restricted to a few well-defined values. In addition, 90% of the objects with spectra that have photometric redshifts between 0.8 and 2.2 are quasars with accurate (|Δz| < 0.3) photometric redshifts. Many of these quasars lie in a single region of color space; judicious application of color-cuts can effectively select quasars with accurate photometric redshifts from the SDSS database—without reference to the SDSS quasar selection algorithm. When the SDSS is complete, this technique will allow the determination of photometric redshifts for ~106 faint SDSS quasar candidates, enabling advances in our knowledge of the quasar luminosity function, gravitational lensing of quasars, and correlations among quasars and between galaxies.

98 citations

Journal ArticleDOI
TL;DR: In this paper, the authors present mid-infrared observations of AGN in the GOODS fields, performed with the Spitzer Space Telescope, which are the deepest infrared and X-ray fields to date and cover a total area of ~0.1 square degrees.
Abstract: We present mid-infrared observations of AGN in the GOODS fields, performed with the Spitzer Space Telescope. These are the deepest infrared and X-ray fields to date and cover a total area of ~0.1 square degrees. AGN are selected on the basis of their hard (2-8 keV) X-ray emission. The median AGN infrared luminosity is at least 10 times larger than the median for normal galaxies with the same redshift distribution, suggesting that the infrared emission is dominated by the central nucleus. The X-ray to infrared luminosity ratios of GOODS AGN, most of which are at 0.5

95 citations

Journal ArticleDOI
TL;DR: In this article, an empirical algorithm for obtaining photometric redshifts of quasars using 5-band Sloan Digital Sky Survey (SDSS) photometry is presented. But it is restricted to a few well-defined values.
Abstract: We present an empirical algorithm for obtaining photometric redshifts of quasars using 5-band Sloan Digital Sky Survey (SDSS) photometry. Our algorithm generates an empirical model of the quasar color-redshift relation, compares the colors of a quasar candidate with this model, and calculates possible photometric redshifts. Using the 3814 quasars of the SDSS Early Data Release Quasar Catalog to generate a median color-redshift relation as a function of redshift we find that, for this same sample, 83% of our predicted redshifts are correct to within |Delta z|<0.3. The algorithm also determines the probability that the redshift is correct, allowing for even more robust photometric redshift determination for smaller, more restricted samples. We apply this technique to a set of 8740 quasar candidates selected by the final version of the SDSS quasar-selection algorithm. The photometric redshifts assigned to non-quasars are restricted to a few well-defined values. In addition, 90% of the objects with spectra that have photometric redshifts between 0.8 and 2.2 are quasars with accurate (|Delta z|<0.3) photometric redshifts. Many of these quasars lie in a single region of color space; judicious application of color-cuts can effectively select quasars with accurate photometric redshifts from the SDSS database. When the SDSS is complete, this technique will allow the determination of photometric redshifts for ~10^6 faint SDSS quasar candidates, enabling advances in our knowledge of the quasar luminosity function, gravitational lensing of quasars, and correlations among quasars and between galaxies.

90 citations


"Spectral energy distributions and m..." refers background in this paper

  • ...%) photometric errors means that IRAC colors alone may not be useful for accurate quasar photometric redshift estimation (e.g., Richards et al. 2001;Weinstein et al. 2004), but MIR color information in addition to optical colors will be extremely useful in breaking redshift degeneracies in the…...

    [...]

Journal ArticleDOI
TL;DR: In this article, the authors present mid-infrared observations of active galactic nuclei (AGNs) in the GOODS fields, performed with the Spitzer Space Telescope, and they estimate the contribution of AGNs missed in X-rays, using a population synthesis model, to be ~45% of the observed AGN contribution, making the AGNs contribution to the infrared background at most 2-10% in the 3-24?m range, depending on wavelength, lower than most previous estimates.
Abstract: We present mid-infrared observations of active galactic nuclei (AGNs) in the GOODS fields, performed with the Spitzer Space Telescope. These are the deepest infrared and X-ray fields to date and cover a total area of ~0.1 deg2. AGNs are selected on the basis of their hard (2-8 keV) X-ray emission. The median AGN infrared luminosity is at least 10 times larger than the median for normal galaxies with the same redshift distribution, suggesting that the infrared emission is dominated by the central nucleus. The X-ray-to-infrared luminosity ratios of GOODS AGNs, most of which are at 0.5 z 1.5, are similar to the values obtained for AGNs in the local universe. The observed infrared flux distribution has an integral slope of ~1.5, and there are 1000 sources per square degree brighter than ~50 ?Jy at ~3-6 ?m. The counts approximately match the predictions of models based on AGN unification, in which the majority of AGNs are obscured. This agreement confirms that the faintest X-ray sources, which are dominated by the host galaxy light in the optical, are obscured AGNs. Using these Spitzer data, the AGN contribution to the extragalactic infrared background light is calculated by correlating the X-ray and infrared catalogs. This is likely to be a lower limit given that the most obscured AGNs are missed in X-rays. We estimate the contribution of AGNs missed in X-rays, using a population synthesis model, to be ~45% of the observed AGN contribution, making the AGN contribution to the infrared background at most ~2%-10% in the 3-24 ?m range, depending on wavelength, lower than most previous estimates. The AGN contribution to the infrared background remains roughly constant with source flux in the IRAC bands but decreases with decreasing flux in the MIPS 24 ?m band, where the galaxy population becomes more important.

88 citations

Related Papers (5)
Frequently Asked Questions (1)
Q1. What contributions have the authors mentioned in the paper "Spectral energy distributions and multiwavelength selection of type 1 quasars" ?

The authors present an analysis of the mid-infrared ( MIR ) and optical properties of type 1 ( broad-line ) quasars detected by the Spitzer Space Telescope. The authors demonstrate how combining MIR and optical colors can yield even more efficient selection of active galactic nuclei ( AGNs ) than MIR or optical colors alone. The authors discuss how the spectral diversity of quasars influences the determination of bolometric luminosities and accretion rates ; assuming themeanSED can lead to errors as large as 50 % for individual quasars when inferring a bolometric luminosity from an optical luminosity. Finally, the authors show that careful consideration of the shape of the mean quasar SED and its redshift dependence leads to a lower estimate of the fraction of reddened /obscured AGNs missed by optical surveys as compared to estimates derived from a single mean MIR to optical flux ratio.