scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Spectral Methods in Fluid Dynamics.

01 Oct 1991-Mathematics of Computation-Vol. 57, Iss: 196, pp 876
TL;DR: In this article, the authors present a set of methods for the estimation of two-dimensional fluid flow, including a Fourier Galerkin method and a Chebyshev Collocation method.
Abstract: 1. Introduction.- 1.1. Historical Background.- 1.2. Some Examples of Spectral Methods.- 1.2.1. A Fourier Galerkin Method for the Wave Equation.- 1.2.2. A Chebyshev Collocation Method for the Heat Equation.- 1.2.3. A Legendre Tau Method for the Poisson Equation.- 1.2.4. Basic Aspects of Galerkin, Tau and Collocation Methods.- 1.3. The Equations of Fluid Dynamics.- 1.3.1. Compressible Navier-Stokes.- 1.3.2. Compressible Euler.- 1.3.3. Compressible Potential.- 1.3.4. Incompressible Flow.- 1.3.5. Boundary Layer.- 1.4. Spectral Accuracy for a Two-Dimensional Fluid Calculation.- 1.5. Three-Dimensional Applications in Fluids.- 2. Spectral Approximation.- 2.1. The Fourier System.- 2.1.1. The Continuous Fourier Expansion.- 2.1.2. The Discrete Fourier Expansion.- 2.1.3. Differentiation.- 2.1.4. The Gibbs Phenomenon.- 2.2. Orthogonal Polynomials in ( - 1, 1).- 2.2.1. Sturm-Liouville Problems.- 2.2.2. Orthogonal Systems of Polynomials.- 2.2.3. Gauss-Type Quadratures and Discrete Polynomial Transforms.- 2.3. Legendre Polynomials.- 2.3.1. Basic Formulas.- 2.3.2. Differentiation.- 2.4. Chebyshev Polynomials.- 2.4.1. Basic Formulas.- 2.4.2. Differentiation.- 2.5. Generalizations.- 2.5.1. Jacobi Polynomials.- 2.5.2. Mapping.- 2.5.3. Semi-Infinite Intervals.- 2.5.4. Infinite Intervals.- 3. Fundamentals of Spectral Methods for PDEs.- 3.1. Spectral Projection of the Burgers Equation.- 3.1.1. Fourier Galerkin.- 3.1.2. Fourier Collocation.- 3.1.3. Chebyshev Tau.- 3.1.4. Chebyshev Collocation.- 3.2. Convolution Sums.- 3.2.1. Pseudospectral Transform Methods.- 3 2 2 Aliasing Removal by Padding or Truncation.- 3.2.3. Aliasing Removal by Phase Shifts.- 3.2.4. Convolution Sums in Chebyshev Methods.- 3.2.5. Relation Between Collocation and Pseudospectral Methods.- 3.3. Boundary Conditions.- 3.4. Coordinate Singularities.- 3.4.1. Polar Coordinates.- 3.4.2. Spherical Polar Coordinates.- 3.5. Two-Dimensional Mapping.- 4. Temporal Discretization.- 4.1. Introduction.- 4.2. The Eigenvalues of Basic Spectral Operators.- 4.2.1. The First-Derivative Operator.- 4.2.2. The Second-Derivative Operator.- 4.3. Some Standard Schemes.- 4.3.1. Multistep Schemes.- 4.3.2. Runge-Kutta Methods.- 4.4. Special Purpose Schemes.- 4.4.1. High Resolution Temporal Schemes.- 4.4.2. Special Integration Techniques.- 4.4.3. Lerat Schemes.- 4.5. Conservation Forms.- 4.6. Aliasing.- 5. Solution Techniques for Implicit Spectral Equations.- 5.1. Direct Methods.- 5.1.1. Fourier Approximations.- 5.1.2. Chebyshev Tau Approximations.- 5.1.3. Schur-Decomposition and Matrix-Diagonalization.- 5.2. Fundamentals of Iterative Methods.- 5.2.1. Richardson Iteration.- 5.2.2. Preconditioning.- 5.2.3. Non-Periodic Problems.- 5.2.4. Finite-Element Preconditioning.- 5.3. Conventional Iterative Methods.- 5.3.1. Descent Methods for Symmetric, Positive-Definite Systems.- 5.3.2. Descent Methods for Non-Symmetric Problems.- 5.3.3. Chebyshev Acceleration.- 5.4. Multidimensional Preconditioning.- 5.4.1. Finite-Difference Solvers.- 5.4.2. Modified Finite-Difference Preconditioners.- 5.5. Spectral Multigrid Methods.- 5.5.1. Model Problem Discussion.- 5.5.2. Two-Dimensional Problems.- 5.5.3. Interpolation Operators.- 5.5.4. Coarse-Grid Operators.- 5.5.5. Relaxation Schemes.- 5.6. A Semi-Implicit Method for the Navier-Stokes Equations.- 6. Simple Incompressible Flows.- 6.1. Burgers Equation.- 6.2. Shear Flow Past a Circle.- 6.3. Boundary-Layer Flows.- 6.4. Linear Stability.- 7. Some Algorithms for Unsteady Navier-Stokes Equations.- 7.1. Introduction.- 7.2. Homogeneous Flows.- 7.2.1. A Spectral Galerkin Solution Technique.- 7.2.2. Treatment of the Nonlinear Terms.- 7.2.3. Refinements.- 7.2.4. Pseudospectral and Collocation Methods.- 7.3. Inhomogeneous Flows.- 7.3.1. Coupled Methods.- 7.3.2. Splitting Methods.- 7.3.3. Galerkin Methods.- 7.3.4. Other Confined Flows.- 7.3.5. Unbounded Flows.- 7.3.6. Aliasing in Transition Calculations.- 7.4. Flows with Multiple Inhomogeneous Directions.- 7.4.1. Choice of Mesh.- 7.4.2. Coupled Methods.- 7.4.3. Splitting Methods.- 7.4.4. Other Methods.- 7.5. Mixed Spectral/Finite-Difference Methods.- 8. Compressible Flow.- 8.1. Introduction.- 8.2. Boundary Conditions for Hyperbolic Problems.- 8.3. Basic Results for Scalar Nonsmooth Problems.- 8.4. Homogeneous Turbulence.- 8.5. Shock-Capturing.- 8.5.1. Potential Flow.- 8.5.2. Ringleb Flow.- 8.5.3. Astrophysical Nozzle.- 8.6. Shock-Fitting.- 8.7. Reacting Flows.- 9. Global Approximation Results.- 9.1. Fourier Approximation.- 9.1.1. Inverse Inequalities for Trigonometric Polynomials.- 9.1.2. Estimates for the Truncation and Best Approximation Errors.- 9.1.3. Estimates for the Interpolation Error.- 9.2. Sturm-Liouville Expansions.- 9.2.1. Regular Sturm-Liouville Problems.- 9.2.2. Singular Sturm-Liouville Problems.- 9.3. Discrete Norms.- 9.4. Legendre Approximations.- 9.4.1. Inverse Inequalities for Algebraic Polynomials.- 9.4.2. Estimates for the Truncation and Best Approximation Errors.- 9.4.3. Estimates for the Interpolation Error.- 9.5. Chebyshev Approximations.- 9.5.1. Inverse Inequalities for Polynomials.- 9.5.2. Estimates for the Truncation and Best Approximation Errors.- 9.5.3. Estimates for the Interpolation Error.- 9.5.4. Proofs of Some Approximation Results.- 9.6. Other Polynomial Approximations.- 9.6.1. Jacobi Polynomials.- 9.6.2. Laguerre and Hermite Polynomials.- 9.7. Approximation Results in Several Dimensions.- 9.7.1. Fourier Approximations.- 9.7.2. Legendre Approximations.- 9.7.3. Chebyshev Approximations.- 9.7.4. Blended Fourier and Chebyshev Approximations.- 10. Theory of Stability and Convergence for Spectral Methods.- 10.1. The Three Examples Revisited.- 10.1.1. A Fourier Galerkin Method for the Wave Equation.- 10.1.2. A Chebyshev Collocation Method for the Heat Equation.- 10.1.3. A Legendre Tau Method for the Poisson Equation.- 10.2. Towards a General Theory.- 10.3. General Formulation of Spectral Approximations to Linear Steady Problems.- 10.4. Galerkin, Collocation and Tau Methods.- 10.4.1. Galerkin Methods.- 10.4.2. Tau Methods.- 10.4.3. Collocation Methods.- 10.5. General Formulation of Spectral Approximations to Linear Evolution Equations.- 10.5.1. Conditions for Stability and Convergence: The Parabolic Case.- 10.5.2. Conditions for Stability and Convergence: The Hyperbolic Case.- 10.6. The Error Equation.- 11. Steady, Smooth Problems.- 11.1. The Poisson Equation.- 11.1.1. Legendre Methods.- 11.1.2. Chebyshev Methods.- 11.1.3. Other Boundary Value Problems.- 11.2. Advection-Diffusion Equation.- 11.2.1. Linear Advection-Diffusion Equation.- 11.2.2. Steady Burgers Equation.- 11.3. Navier-Stokes Equations.- 11.3.1. Compatibility Conditions Between Velocity and Pressure.- 11.3.2. Direct Discretization of the Continuity Equation: The \"inf-sup\" Condition.- 11.3.3. Discretizations of the Continuity Equation by an Influence-Matrix Technique: The Kleiser-Schumann Method.- 11.3.4. Navier-Stokes Equations in Streamfunction Formulation.- 11.4. The Eigenvalues of Some Spectral Operators.- 11.4.1. The Discrete Eigenvalues for Lu = ? uxx.- 11.4.2. The Discrete Eigenvalues for Lu = ? vuxx + bux.- 11.4.3. The Discrete Eigenvalues for Lu = ux.- 12. Transient, Smooth Problems.- 12.1. Linear Hyperbolic Equations.- 12.1.1. Periodic Boundary Conditions.- 12.1.2. Non-Periodic Boundary Conditions.- 12.1.3. Hyperbolic Systems.- 12.1.4. Spectral Accuracy for Non-Smooth Solutions.- 12.2. Heat Equation.- 12.2.1. Semi-Discrete Approximation.- 12.2.2. Fully Discrete Approximation.- 12.3. Advection-Diffusion Equation.- 12.3.1. Semi-Discrete Approximation.- 12.3.2. Fully Discrete Approximation.- 13. Domain Decomposition Methods.- 13.1. Introduction.- 13.2. Patching Methods.- 13.2.1. Notation.- 13.2.2. Discretization.- 13.2.3. Solution Techniques.- 13.2.4. Examples.- 13.3. Variational Methods.- 13.3.1. Formulation.- 13.3.2. The Spectral-Element Method.- 13.4. The Alternating Schwarz Method.- 13.5. Mathematical Aspects of Domain Decomposition Methods.- 13.5.1. Patching Methods.- 13.5.2. Equivalence Between Patching and Variational Methods.- 13.6. Some Stability and Convergence Results.- 13.6.1. Patching Methods.- 13.6.2. Variational Methods.- Appendices.- A. Basic Mathematical Concepts.- B. Fast Fourier Transforms.- C. Jacobi-Gauss-Lobatto Roots.- References.
Citations
More filters
Journal ArticleDOI
TL;DR: In this article, the concept of isogeometric analysis is proposed and the basis functions generated from NURBS (Non-Uniform Rational B-Splines) are employed to construct an exact geometric model.

5,137 citations

Book
01 Jan 1996
TL;DR: In this article, the authors present a review of rigor properties of low-dimensional models and their applications in the field of fluid mechanics. But they do not consider the effects of random perturbation on models.
Abstract: Preface Part I. Turbulence: 1. Introduction 2. Coherent structures 3. Proper orthogonal decomposition 4. Galerkin projection Part II. Dynamical Systems: 5. Qualitative theory 6. Symmetry 7. One-dimensional 'turbulence' 8. Randomly perturbed systems Part III. 9. Low-dimensional Models: 10. Behaviour of the models Part IV. Other Applications and Related Work: 11. Some other fluid problems 12. Review: prospects for rigor Bibliography.

2,920 citations

Journal ArticleDOI
TL;DR: In this paper, the main aspects of ultrashort laser pulse filamentation in various transparent media such as air (gases), transparent solids and liquids are introduced and discussed.

2,282 citations

Book ChapterDOI
Chi-Wang Shu1
01 Jan 1998
TL;DR: In this paper, the authors describe the construction, analysis, and application of ENO and WENO schemes for hyperbolic conservation laws and related Hamilton-Jacobi equations, where the key idea lies at the approximation level, where a nonlinear adaptive procedure is used to automatically choose the locally smoothest stencil, hence avoiding crossing discontinuities in the interpolation procedure as much as possible.
Abstract: In these lecture notes we describe the construction, analysis, and application of ENO (Essentially Non-Oscillatory) and WENO (Weighted Essentially Non-Oscillatory) schemes for hyperbolic conservation laws and related Hamilton-Jacobi equations. ENO and WENO schemes are high order accurate finite difference schemes designed for problems with piecewise smooth solutions containing discontinuities. The key idea lies at the approximation level, where a nonlinear adaptive procedure is used to automatically choose the locally smoothest stencil, hence avoiding crossing discontinuities in the interpolation procedure as much as possible. ENO and WENO schemes have been quite successful in applications, especially for problems containing both shocks and complicated smooth solution structures, such as compressible turbulence simulations and aeroacoustics.

2,005 citations

Journal ArticleDOI
TL;DR: In this article, direct numerical simulation (DNS) of turbulent flows has been reviewed and the complementary nature of experiments and computations in turbulence research has been illustrated, as well as how DNS has impacted turbulence modeling and provided further insight into the structure of turbulent boundary layers.
Abstract: ▪ Abstract We review the direct numerical simulation (DNS) of turbulent flows. We stress that DNS is a research tool, and not a brute-force solution to the Navier-Stokes equations for engineering problems. The wide range of scales in turbulent flows requires that care be taken in their numerical solution. We discuss related numerical issues such as boundary conditions and spatial and temporal discretization. Significant insight into turbulence physics has been gained from DNS of certain idealized flows that cannot be easily attained in the laboratory. We discuss some examples. Further, we illustrate the complementary nature of experiments and computations in turbulence research. Examples are provided where DNS data has been used to evaluate measurement accuracy. Finally, we consider how DNS has impacted turbulence modeling and provided further insight into the structure of turbulent boundary layers.

1,572 citations