scispace - formally typeset
Open AccessBook

Spectroscopy, Luminescence and Radiation Centers in Minerals

Reads0
Chats0
TLDR
In this article, the Mossbauer effect was used to measure the nuclear Gamma-Resonance (Mossbauer Spectrometer) of a single sample of a given sample.
Abstract
1 Mossbauer (Nuclear Gamma-Resonance) Spectroscopy.- 1.1 Basic Principles and Experimental Arrangement.- 1.1.1 Isomer Nuclear Transitions and Gamma-Ray Emission.- 1.1.2 Resonance Fluorescence.- 1.1.3 Mossbauer Effect: a Recoilless Gamma-Fluorescence.- 1.1.4 Experimental Arrangement for Observing the Nuclear Gamma-Resonance (Mossbauer Spectrometer).- 1.1.5 Development of the Method.- 1.2 Mossbauers Nuclei.- 1.3 The Mossbauer Spectra Parameters.- 1.3.1 Isomer (Chemical) Shift.- 1.3.2 Quadrupole Splitting.- 1.3.3 Magnetic Hyperfine Structure.- 1.4 The Mossbauer Spectra of Minerals.- 1.4.1 Distribution of Fe2+ and Fe3+ in Rock-Forming Silicates.- 1.4.2 The Spectra of Sulfide Minerals.- 1.4.3 Spectra of Ferric Oxides and Hydroxides.- 1.4.4 Spectra of Iron in Different Classes of Minerals, in Meteorites, Tektites, and Lunar Samples.- 2 X-Ray and X-Ray Electron Spectroscopy.- 2.1 Basic Concepts.- 2.1.1 Development Stages.- 2.1.2 Systematics of X-Ray and X-Ray Electron Spectroscopy Types.- 2.1.3 X-Ray Emission Spectra.- 2.1.4 X-Ray Absorption Spectra. The Quantum Yield Spectra. Reflection Spectra. Isochromatic Spectra.- 2.1.5 X-Ray Electron Spectroscopy (Electron Spectroscopy for Chemical Analysis). Auger-Spectroscopy.- 2.2 Application of X-Ray and X-Ray Electron Spectroscopy to Study of Chemical Bonding in Minerals.- 2.2.1 Determination of Molecular Orbital and Energy Band Schemes from X-Ray and X-Ray Electron Spectra.- 2.2.2 Chemical Shifts in the X-Ray and X-Ray Electron Spectra and Determination of Effective Charges.- 3 Electron Paramagnetic Resonance.- 3.1 The Substance of the Electron Paramagnetic Resonance (EPR) Phenomenon.- 3.1.1 The Scheme of Obtaining EPR Spectra.- 3.1.2 The Energy Levels Scheme.- 3.1.3 Substances Which Can Be Investigated by Using EPR.- 3.1.4 EPR, Lasers, and Masers.- 3.2 Physical Meaning of the EPR Spectra Parameters.- 3.2.1 The Order of Measurements Experimental and Calculated Parameters.- 3.2.2 g-Factor and Splitting of the Spin Levels in a Magnetic Field.- 3.2.3 Fine Structure of the EPR Spectra Fine Structure Bmn (or D, E) Parameters Initial Splitting.- 3.2.4 Parameters of Hyperfine Structure. Interaction with Magnetic Nuclei of Paramagnetic Ions.- 3.2.5 Spin-Hamiltonian Order of Calculation the Paramagnetic Ions Spectra.- 3.3 Investigation of Minerals by EPR Spectra.- 3.3.1 Principal Applications of EPR Spectroscopy in Mineralogy and Geochemistry.- 3.3.2 Survey of EPR Data for Paramagnetic Impurity Ions in Minerals.- 4 Nuclear Magnetic Resonance (NMR) and Nuclear Quadrupole Resonance (NQR).- 4.1 The Principle of the Phenomenon and Types of Interaction in NMR.- 4.1.1 Types of Nuclei Viewed from the Standpoint of NMR.- 4.1.2 Two Types of NMR-Investigations.- 4.1.3 Principal Mechanisms of Interactions in NMR.- 4.1.4 Spectra of Nuclei with I = 1/2(H1, F19) in Solids.- 4.1.5 Spectra of Nuclei with I ? 1 in Solids.- 4.1.6 High-Resolution NMR-Spectroscopy in Solids.- 4.2 Nuclear Magnetic Resonance in Minerals.- 4.2.1 Types and Behavior of Water in Minerals Structural Position of Protons.- 4.2.2 Structural Applications of NMR.- 4.2.3 Experimental Estimations of the Crystal Field Gradient.- 4.3 Nuclear Quadrupole Resonance.- 4.3.1 The Energy Levels Diagram and the Resonance Condition in NQR.- 4.3.2 Quadrupole Nuclei and Requirements on the Study Substance.- 4.3.3 NQR Spectra Parameters.- 4.3.4 Minerals Investigated and Data Obtained.- 5 Luminescence.- 5.1 Major Steps in the Development and the Present-Day State.- 5.1.1 Applications of Luminescence in Mineralogy.- 5.1.2 Major Steps in the History of Luminescence.- 5.2 General Concepts, Elementary Processes, Parameters.- 5.2.1 Theoretical Bases Necessary for Understanding the Processes of Luminescence.- 5.2.2 Absorption, Luminescence, Excitation Spectra: the Scheme of the Experiment and Energy Levels.- 5.2.3 Energy Level Patterns and Configuration Curves Diagrams.- 5.2.4 Kinetics of Ion Luminescence in a Crystal Fluorescence and Phosphorescence.- 5.2.5 Transfer of Energy in Luminescence: Sensitization and Quenching.- 5.2.6 Representation of Luminescence in the Band Scheme and the Luminescence of Crystallophosphors.- 5.2.7 Methods of Luminescence Excitation.- 5.3 Types of Luminescent Systems in Minerals.- 5.3.1 Transition Metal Ions the Crystal Field Theory and Luminescence Spectra.- 5.3.2 Rare Earths Absorption and Luminescence Spectra.- 5.3.3 Actinides Absorption and Luminescence Spectra.- 5.3.4 Mercury-Like Ions Pb2+ in Feldspars and Calcites.- 5.3.5 Molecular Ions S?2 O?2 and F-Centers.- 5.3.6 Crystallophosphors of the ZnS Type Natural Sphalerites and Other Sulphides.- 5.3.7 Luminescence of Diamond.- 6 Thermoluminescence.- 6.1 Mechanism and Parameters of Thermoluminescence.- 6.1.1 The Nature of Emission Centers.- 6.1.2 The Nature of Trapping Centers.- 6.1.3 Determination of the Thermoluminescence Parameters.- 6.2 Experimental Data, Their Interpretation and Application in Geology.- 6.2.1 Alkali Halide Crystals.- 6.2.2 Fluorite.- 6.2.3 Anhydrite.- 6.2.4 Quartz.- 6.2.5 Feldspars.- 6.2.6 Calcite and Dolomite.- 6.2.7 Zircon.- 6.2.8 Geological Applications.- 6.2.9 Crystallochemical Factors.- 6.2.10 Physicochemical Factors.- 6.2.11 Geological and Geochemical Factors.- 6.2.12 Geological Age Dependences.- 7 Radiation Electron-Hole Centers (Free Radicals) in Minerals.- 7.1 Basic Principles and Methods.- 7.1.1 Discovery of Free Radicals in Minerals and Their Wide Distribution.- 7.1.2 Defects and Centers.- 7.1.3 Free Radicals in Crystals.- 7.1.4 Molecular Orbital Schemes and EPR Parameters.- 7.1.5 The Way to Identify the Electron-Hole Centers from the EPR Spectra.- 7.1.6 Systematics of the Electron-Hole Centers in Minerals and Inorganic Compounds.- 7.2 Description of the Centers.- 7.2.1 OxygenCenters: O?,O?2,O3?2,O?3.- 7.2.2 Carbonate Centers: CO3?3, CO?3, CO2.- 7.2.3 Sulfate and Sulfide Centers: SO?4, SO?3, SO?2 S?2 S?3.- 7.2.4 Silicate Centers: SiO5?4, SiO3?4, SiO?3, SiO?2.- 7.2.5 Phosphate Centers: PO4?4, PO2?4, PO2?3, PO2?2, PO02.- 7.2.6 Impurity Cation Centers.- 7.2.7 Hole Center S?.- 7.2.8 Atomic Hydrogen in Crystals.- 7.3 Models of Centers in Minerals.- 7.3.1 Prevalence and Significance of Centers in Minerals.- 7.3.2 Features Specific to the Structural Type and Models of the Centers in Minerals.- 7.3.3 Quartz.- 7.3.4 Feldspar.- 7.3.5 Framework Aluminosilicates with Additional Anions: Scapolite, Cancrinite, Sodalite, Ussingite Groups.- 7.3.6 Zeolites.- 7.3.7 Zircon.- 7.3.8 Beryl, Topaz, Phenakite, Euclase, Kyanite, Danburite, Datolite.- 7.3.9 Calcite.- 7.3.10 Anhydrite.- 7.3.11 Barite and Celestine.- 7.3.12 Apatite.- 7.3.13 Sheelite.- 7.3.14 Fluorite.- 7.4 Electron-Hole Centers in Alkali Halide Crystals.- 7.4.1 F Center.- 7.4.2 F Center in Compounds of Other Types.- 7.4.3 F Aggregate Centers.- 7.4.4 V Centers and Molecule Ions Hal?2, Hal3?2.- References.

read more

Citations
More filters
Journal ArticleDOI

Pb diffusion in zircon

TL;DR: Watson et al. as mentioned in this paper measured chemical diffusion of Ti under anhydrous conditions at 1-atm and under fluid-present elevated pressure (1.1-1.2 GPa) conditions in natural zircon.
Journal ArticleDOI

Interface-induced phenomena in magnetism

TL;DR: This article reviews static and dynamic interfacial effects in magnetism, focusing on interfacially-driven magnetic effects and phenomena associated with spin-orbit coupling and intrinsic symmetry breaking at interfaces, identifying the most exciting new scientific results and pointing to promising future research directions.
Journal ArticleDOI

Diffusion in Zircon

TL;DR: In this article, an overview of the findings to date from laboratory measurements of diffusion of cations and oxygen in zircon is presented, with important implications for isotopic dating, interpretation of stable-isotope ratios, closure temperatures, and formation and preservation of primary chemical composition and zoning in Zircon.
Journal ArticleDOI

Electron spin resonance (ESR) dating

TL;DR: ESR dating has been systematically applied in earth sciences and archaeology since 1975 when Ikeya dated a stalactite from the Akiyoshi cave in Japan as discussed by the authors, which allows the age assessment of heated ceramics, volcanic rocks, intrafault material, or windblown sediments.
Journal ArticleDOI

Spectral information from minerals relevant for luminescence dating

TL;DR: In this article, a review of spectral features of luminescence from minerals used in dating and allied research is presented and possible links between luminance production in minerals and particular lattice defects are considered.