scispace - formally typeset
Search or ask a question
Journal ArticleDOI

SPFP: Speed without compromise—A mixed precision model for GPU accelerated molecular dynamics simulations

01 Feb 2013-Computer Physics Communications (North-Holland)-Vol. 184, Iss: 2, pp 374-380
TL;DR: This precision model replaces double precision arithmetic with fixed point integer arithmetic for the accumulation of force components as compared to a previously introduced model that uses mixed single/double precision arithmetic, which significantly boosts performance on modern GPU hardware without sacrificing numerical accuracy.
About: This article is published in Computer Physics Communications.The article was published on 2013-02-01. It has received 851 citations till now. The article focuses on the topics: Double-precision floating-point format.
Citations
More filters
Journal ArticleDOI
TL;DR: An implementation of explicit solvent all atom classical molecular dynamics (MD) within the AMBER program package that runs entirely on CUDA-enabled GPUs, providing results that are statistically indistinguishable from the traditional CPU version of the software and with performance that exceeds that achievable by the CPUs running on all conventional CPU-based clusters and supercomputers.
Abstract: We present an implementation of explicit solvent all atom classical molecular dynamics (MD) within the AMBER program package that runs entirely on CUDA-enabled GPUs. First released publicly in April 2010 as part of version 11 of the AMBER MD package and further improved and optimized over the last two years, this implementation supports the three most widely used statistical mechanical ensembles (NVE, NVT, and NPT), uses particle mesh Ewald (PME) for the long-range electrostatics, and runs entirely on CUDA-enabled NVIDIA graphics processing units (GPUs), providing results that are statistically indistinguishable from the traditional CPU version of the software and with performance that exceeds that achievable by the CPU version of AMBER software running on all conventional CPU-based clusters and supercomputers. We briefly discuss three different precision models developed specifically for this work (SPDP, SPFP, and DPDP) and highlight the technical details of the approach as it extends beyond previously reported work [Gotz et al., J. Chem. Theory Comput. 2012, DOI: 10.1021/ct200909j; Le Grand et al., Comp. Phys. Comm. 2013, DOI: 10.1016/j.cpc.2012.09.022].We highlight the substantial improvements in performance that are seen over traditional CPU-only machines and provide validation of our implementation and precision models. We also provide evidence supporting our decision to deprecate the previously described fully single precision (SPSP) model from the latest release of the AMBER software package.

2,418 citations

Journal ArticleDOI
TL;DR: The most recent developments, since version 9 was released in April 2006, of the Amber and AmberTools MD software packages are outlined, referred to here as simply the Amber package.
Abstract: Molecular dynamics (MD) allows the study of biological and chemical systems at the atomistic level on timescales from femtoseconds to milliseconds. It complements experiment while also offering a way to follow processes difficult to discern with experimental techniques. Numerous software packages exist for conducting MD simulations of which one of the widest used is termed Amber. Here, we outline the most recent developments, since version 9 was released in April 2006, of the Amber and AmberTools MD software packages, referred to here as simply the Amber package. The latest release represents six years of continued development, since version 9, by multiple research groups and the culmination of over 33 years of work beginning with the first version in 1979. The latest release of the Amber package, version 12 released in April 2012, includes a substantial number of important developments in both the scientific and computer science arenas. We present here a condensed vision of what Amber currently supports and where things are likely to head over the coming years. Figure 1 shows the performance in ns/day of the Amber package version 12 on a single-core AMD FX-8120 8-Core 3.6GHz CPU, the Cray XT5 system, and a single GPU GTX680. © 2012 John Wiley & Sons, Ltd.

1,734 citations

Journal ArticleDOI
TL;DR: OpenMM is a molecular dynamics simulation toolkit with a unique focus on extensibility, which makes it an ideal tool for researchers developing new simulation methods, and also allows those new methods to be immediately available to the larger community.
Abstract: OpenMM is a molecular dynamics simulation toolkit with a unique focus on extensibility. It allows users to easily add new features, including forces with novel functional forms, new integration algorithms, and new simulation protocols. Those features automatically work on all supported hardware types (including both CPUs and GPUs) and perform well on all of them. In many cases they require minimal coding, just a mathematical description of the desired function. They also require no modification to OpenMM itself and can be distributed independently of OpenMM. This makes it an ideal tool for researchers developing new simulation methods, and also allows those new methods to be immediately available to the larger community.

1,364 citations


Cites background from "SPFP: Speed without compromise—A mi..."

  • ...It loads a PDB file, models the forces with the AMBER99SB-ILDN force field [20] and TIP-3P water model [21], performs a local energy minimization to eliminate clashes, and then simulates 1 million steps of Verlet dynamics....

    [...]

  • ...Since that time, it has found its way into other GPU accelerated MD codes, such as AMBER [36]....

    [...]

  • ...All simulations used the AMBER99SB-ILDN force field, a 2 fs time step, rigid water, and constraints on bonds involving hydrogen....

    [...]

  • ...We first benchmarked the performance using the AMBER99SB-ILDN force field and TIP3P water model....

    [...]

Journal ArticleDOI
TL;DR: The AMBER lipid force field has been updated to create Lipid14, allowing tensionless simulation of a number of lipid types with the AMBER MD package, and is compatible with theAMBER protein, nucleic acid, carbohydrate, and small molecule force fields.
Abstract: The AMBER lipid force field has been updated to create Lipid14, allowing tensionless simulation of a number of lipid types with the AMBER MD package. The modular nature of this force field allows numerous combinations of head and tail groups to create different lipid types, enabling the easy insertion of new lipid species. The Lennard-Jones and torsion parameters of both the head and tail groups have been revised and updated partial charges calculated. The force field has been validated by simulating bilayers of six different lipid types for a total of 0.5 μs each without applying a surface tension; with favorable comparison to experiment for properties such as area per lipid, volume per lipid, bilayer thickness, NMR order parameters, scattering data, and lipid lateral diffusion. As the derivation of this force field is consistent with the AMBER development philosophy, Lipid14 is compatible with the AMBER protein, nucleic acid, carbohydrate, and small molecule force fields.

973 citations

Journal ArticleDOI
TL;DR: Since no significant difference in kinetics or thermodynamics is observed by the use of fast HMR trajectories, further evidence is provided that long-time-step HMR MD simulations are a viable tool for accelerating molecular dynamics simulations for molecules of biochemical interest.
Abstract: Previous studies have shown that the method of hydrogen mass repartitioning (HMR) is a potentially useful tool for accelerating molecular dynamics (MD) simulations. By repartitioning the mass of heavy atoms into the bonded hydrogen atoms, it is possible to slow the highest-frequency motions of the macromolecule under study, thus allowing the time step of the simulation to be increased by up to a factor of 2. In this communication, we investigate further how this mass repartitioning allows the simulation time step to be increased in a stable fashion without significantly increasing discretization error. To this end, we ran a set of simulations with different time steps and mass distributions on a three-residue peptide to get a comprehensive view of the effect of mass repartitioning and time step increase on a system whose accessible phase space is fully explored in a relatively short amount of time. We next studied a 129-residue protein, hen egg white lysozyme (HEWL), to verify that the observed behavior extends to a larger, more-realistic, system. Results for the protein include structural comparisons from MD trajectories, as well as comparisons of pKa calculations via constant-pH MD. We also calculated a potential of mean force (PMF) of a dihedral rotation for the MTS [(1-oxyl-2,2,5,5-tetramethyl-pyrroline-3-methyl)methanethiosulfonate] spin label via umbrella sampling with a set of regular MD trajectories, as well as a set of mass-repartitioned trajectories with a time step of 4 fs. Since no significant difference in kinetics or thermodynamics is observed by the use of fast HMR trajectories, further evidence is provided that long-time-step HMR MD simulations are a viable tool for accelerating MD simulations for molecules of biochemical interest.

771 citations

References
More filters
Journal ArticleDOI
TL;DR: In this article, the authors compared the Bernal Fowler (BF), SPC, ST2, TIPS2, TIP3P, and TIP4P potential functions for liquid water in the NPT ensemble at 25°C and 1 atm.
Abstract: Classical Monte Carlo simulations have been carried out for liquid water in the NPT ensemble at 25 °C and 1 atm using six of the simpler intermolecular potential functions for the water dimer: Bernal–Fowler (BF), SPC, ST2, TIPS2, TIP3P, and TIP4P. Comparisons are made with experimental thermodynamic and structural data including the recent neutron diffraction results of Thiessen and Narten. The computed densities and potential energies are in reasonable accord with experiment except for the original BF model, which yields an 18% overestimate of the density and poor structural results. The TIPS2 and TIP4P potentials yield oxygen–oxygen partial structure functions in good agreement with the neutron diffraction results. The accord with the experimental OH and HH partial structure functions is poorer; however, the computed results for these functions are similar for all the potential functions. Consequently, the discrepancy may be due to the correction terms needed in processing the neutron data or to an effect uniformly neglected in the computations. Comparisons are also made for self‐diffusion coefficients obtained from molecular dynamics simulations. Overall, the SPC, ST2, TIPS2, and TIP4P models give reasonable structural and thermodynamic descriptions of liquid water and they should be useful in simulations of aqueous solutions. The simplicity of the SPC, TIPS2, and TIP4P functions is also attractive from a computational standpoint.

33,683 citations


"SPFP: Speed without compromise—A mi..." refers methods in this paper

  • ...Test systems are droplets and cubic boxes of TIP3Pwater molecules, respectively....

    [...]

  • ...An implicit solvent GB simulation of apo-myoglobin (2492 atoms) and an explicit solvent PME simulation of dihydrofolate reductase in a rectangular box of TIP3P [21] water atoms (DHFR, 23,558 atoms including solvent) using the ff99SB [22] version of the AMBER force field were chosen as representative examples of typical research scenarios....

    [...]

Journal ArticleDOI
TL;DR: In this paper, a method is described to realize coupling to an external bath with constant temperature or pressure with adjustable time constants for the coupling, which can be easily extendable to other variables and to gradients, and can be applied also to polyatomic molecules involving internal constraints.
Abstract: In molecular dynamics (MD) simulations the need often arises to maintain such parameters as temperature or pressure rather than energy and volume, or to impose gradients for studying transport properties in nonequilibrium MD A method is described to realize coupling to an external bath with constant temperature or pressure with adjustable time constants for the coupling The method is easily extendable to other variables and to gradients, and can be applied also to polyatomic molecules involving internal constraints The influence of coupling time constants on dynamical variables is evaluated A leap‐frog algorithm is presented for the general case involving constraints with coupling to both a constant temperature and a constant pressure bath

25,256 citations


"SPFP: Speed without compromise—A mi..." refers methods in this paper

  • ...0 fs were generated with settings as described above for the water droplets, however, using the Berendsen weak coupling thermostat [26] with a target temperature of 300K and a time constant of τT = 10....

    [...]

Journal ArticleDOI
TL;DR: An N⋅log(N) method for evaluating electrostatic energies and forces of large periodic systems is presented based on interpolation of the reciprocal space Ewald sums and evaluation of the resulting convolutions using fast Fourier transforms.
Abstract: An N⋅log(N) method for evaluating electrostatic energies and forces of large periodic systems is presented. The method is based on interpolation of the reciprocal space Ewald sums and evaluation of the resulting convolutions using fast Fourier transforms. Timings and accuracies are presented for three large crystalline ionic systems.

24,332 citations


"SPFP: Speed without compromise—A mi..." refers methods in this paper

  • ...We show that this implementation affords numerical stability that is equivalent to the SPDP precision model, both for generalized Born (GB) [14] implicit solvent simulations, as well as explicit solvent simulations using the particle mesh Ewald (PME) [15] algorithmwhile providing a considerably higher computational throughput, in particular on the newNVIDIA Kepler hardware such as the recently released GTX680 GPU....

    [...]

Journal ArticleDOI
TL;DR: In this paper, a numerical algorithm integrating the 3N Cartesian equations of motion of a system of N points subject to holonomic constraints is formulated, and the relations of constraint remain perfectly fulfilled at each step of the trajectory despite the approximate character of numerical integration.

18,394 citations

Journal ArticleDOI
TL;DR: The results demonstrate that use of ab initio structural and energetic data by themselves are not sufficient to obtain an adequate backbone representation for peptides and proteins in solution and in crystals.
Abstract: New protein parameters are reported for the all-atom empirical energy function in the CHARMM program. The parameter evaluation was based on a self-consistent approach designed to achieve a balance between the internal (bonding) and interaction (nonbonding) terms of the force field and among the solvent−solvent, solvent−solute, and solute−solute interactions. Optimization of the internal parameters used experimental gas-phase geometries, vibrational spectra, and torsional energy surfaces supplemented with ab initio results. The peptide backbone bonding parameters were optimized with respect to data for N-methylacetamide and the alanine dipeptide. The interaction parameters, particularly the atomic charges, were determined by fitting ab initio interaction energies and geometries of complexes between water and model compounds that represented the backbone and the various side chains. In addition, dipole moments, experimental heats and free energies of vaporization, solvation and sublimation, molecular volume...

13,164 citations