scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Spintronics: a spin-based electronics vision for the future.

TL;DR: This review describes a new paradigm of electronics based on the spin degree of freedom of the electron, which has the potential advantages of nonvolatility, increased data processing speed, decreased electric power consumption, and increased integration densities compared with conventional semiconductor devices.
Abstract: This review describes a new paradigm of electronics based on the spin degree of freedom of the electron. Either adding the spin degree of freedom to conventional charge-based electronic devices or using the spin alone has the potential advantages of nonvolatility, increased data processing speed, decreased electric power consumption, and increased integration densities compared with conventional semiconductor devices. To successfully incorporate spins into existing semiconductor technology, one has to resolve technical issues such as efficient injection, transport, control and manipulation, and detection of spin polarization as well as spin-polarized currents. Recent advances in new materials engineering hold the promise of realizing spintronic devices in the near future. We review the current state of the spin-based devices, efforts in new materials fabrication, issues in spin transport, and optical spin manipulation.
Citations
More filters
Journal ArticleDOI
TL;DR: Spintronics, or spin electronics, involves the study of active control and manipulation of spin degrees of freedom in solid-state systems as discussed by the authors, where the primary focus is on the basic physical principles underlying the generation of carrier spin polarization, spin dynamics, and spin-polarized transport.
Abstract: Spintronics, or spin electronics, involves the study of active control and manipulation of spin degrees of freedom in solid-state systems. This article reviews the current status of this subject, including both recent advances and well-established results. The primary focus is on the basic physical principles underlying the generation of carrier spin polarization, spin dynamics, and spin-polarized transport in semiconductors and metals. Spin transport differs from charge transport in that spin is a nonconserved quantity in solids due to spin-orbit and hyperfine coupling. The authors discuss in detail spin decoherence mechanisms in metals and semiconductors. Various theories of spin injection and spin-polarized transport are applied to hybrid structures relevant to spin-based devices and fundamental studies of materials properties. Experimental work is reviewed with the emphasis on projected applications, in which external electric and magnetic fields and illumination by light will be used to control spin and charge dynamics to create new functionalities not feasible or ineffective with conventional electronics.

9,158 citations

Journal ArticleDOI
TL;DR: In this paper, the authors consider the atomic dynamics and the optical response of the medium to a continuous-wave laser and show how coherently prepared media can be used to improve frequency conversion in nonlinear optical mixing experiments.
Abstract: Coherent preparation by laser light of quantum states of atoms and molecules can lead to quantum interference in the amplitudes of optical transitions. In this way the optical properties of a medium can be dramatically modified, leading to electromagnetically induced transparency and related effects, which have placed gas-phase systems at the center of recent advances in the development of media with radically new optical properties. This article reviews these advances and the new possibilities they offer for nonlinear optics and quantum information science. As a basis for the theory of electromagnetically induced transparency the authors consider the atomic dynamics and the optical response of the medium to a continuous-wave laser. They then discuss pulse propagation and the adiabatic evolution of field-coupled states and show how coherently prepared media can be used to improve frequency conversion in nonlinear optical mixing experiments. The extension of these concepts to very weak optical fields in the few-photon limit is then examined. The review concludes with a discussion of future prospects and potential new applications.

4,218 citations

Journal ArticleDOI
26 Mar 2013-ACS Nano
TL;DR: The properties and advantages of single-, few-, and many-layer 2D materials in field-effect transistors, spin- and valley-tronics, thermoelectrics, and topological insulators, among many other applications are highlighted.
Abstract: Graphene’s success has shown that it is possible to create stable, single and few-atom-thick layers of van der Waals materials, and also that these materials can exhibit fascinating and technologically useful properties. Here we review the state-of-the-art of 2D materials beyond graphene. Initially, we will outline the different chemical classes of 2D materials and discuss the various strategies to prepare single-layer, few-layer, and multilayer assembly materials in solution, on substrates, and on the wafer scale. Additionally, we present an experimental guide for identifying and characterizing single-layer-thick materials, as well as outlining emerging techniques that yield both local and global information. We describe the differences that occur in the electronic structure between the bulk and the single layer and discuss various methods of tuning their electronic properties by manipulating the surface. Finally, we highlight the properties and advantages of single-, few-, and many-layer 2D materials in...

4,123 citations


Cites background from "Spintronics: a spin-based electroni..."

  • ...tion and hyperfine couplings, which are expected to lead to long spin lifetimes.(225) Here, graphene serves as...

    [...]

Journal ArticleDOI
16 Nov 2006-Nature
TL;DR: In this article, it was shown that if in-plane homogeneous electric fields are applied across the zigzag-shaped edges of the graphene nanoribbons, their magnetic properties can be controlled by the external electric fields.
Abstract: Electrical current can be completely spin polarized in a class of materials known as half-metals, as a result of the coexistence of metallic nature for electrons with one spin orientation and insulating nature for electrons with the other. Such asymmetric electronic states for the different spins have been predicted for some ferromagnetic metals--for example, the Heusler compounds--and were first observed in a manganese perovskite. In view of the potential for use of this property in realizing spin-based electronics, substantial efforts have been made to search for half-metallic materials. However, organic materials have hardly been investigated in this context even though carbon-based nanostructures hold significant promise for future electronic devices. Here we predict half-metallicity in nanometre-scale graphene ribbons by using first-principles calculations. We show that this phenomenon is realizable if in-plane homogeneous electric fields are applied across the zigzag-shaped edges of the graphene nanoribbons, and that their magnetic properties can be controlled by the external electric fields. The results are not only of scientific interest in the interplay between electric fields and electronic spin degree of freedom in solids but may also open a new path to explore spintronics at the nanometre scale, based on graphene.

3,519 citations

Journal ArticleDOI
TL;DR: In this paper, a review of various nanostructures of ZnO grown by the solid-vapour phase technique and their corresponding growth mechanisms is presented. And the application of nanobelts as nanosensors, nanocantilevers, field effect transistors and nanoresonators is demonstrated.
Abstract: Zinc oxide is a unique material that exhibits semiconducting and piezoelectric dual properties. Using a solid–vapour phase thermal sublimation technique, nanocombs, nanorings, nanohelixes/nanosprings, nanobelts, nanowires and nanocages of ZnO have been synthesized under specific growth conditions. These unique nanostructures unambiguously demonstrate that ZnO probably has the richest family of nanostructures among all materials, both in structures and in properties. The nanostructures could have novel applications in optoelectronics, sensors, transducers and biomedical sciences. This article reviews the various nanostructures of ZnO grown by the solid–vapour phase technique and their corresponding growth mechanisms. The application of ZnO nanobelts as nanosensors, nanocantilevers, field effect transistors and nanoresonators is demonstrated.

3,361 citations

References
More filters
Journal ArticleDOI
TL;DR: This work ascribes this giant magnetoresistance of (001)Fe/(001)Cr superlattices prepared by molecularbeam epitaxy to spin-dependent transmission of the conduction electrons between Fe layers through Cr layers.
Abstract: We have studied the magnetoresistance of (001)Fe/(001)Cr superlattices prepared by molecularbeam epitaxy. A huge magnetoresistance is found in superlattices with thin Cr layers: For example, with ${t}_{\mathrm{Cr}}=9$ \AA{}, at $T=4.2$ K, the resistivity is lowered by almost a factor of 2 in a magnetic field of 2 T. We ascribe this giant magnetoresistance to spin-dependent transmission of the conduction electrons between Fe layers through Cr layers.

7,993 citations

Journal ArticleDOI
11 Feb 2000-Science
TL;DR: Zener's model of ferromagnetism, originally proposed for transition metals in 1950, can explain T(C) of Ga(1-)(x)Mn(x)As and that of its II-VI counterpart Zn(1)-Mn (x)Te and is used to predict materials with T (C) exceeding room temperature, an important step toward semiconductor electronics that use both charge and spin.
Abstract: Ferromagnetism in manganese compound semiconductors not only opens prospects for tailoring magnetic and spin-related phenomena in semiconductors with a precision specific to III-V compounds but also addresses a question about the origin of the magnetic interactions that lead to a Curie temperature (T(C)) as high as 110 K for a manganese concentration of just 5%. Zener's model of ferromagnetism, originally proposed for transition metals in 1950, can explain T(C) of Ga(1-)(x)Mn(x)As and that of its II-VI counterpart Zn(1-)(x)Mn(x)Te and is used to predict materials with T(C) exceeding room temperature, an important step toward semiconductor electronics that use both charge and spin.

7,062 citations

Journal ArticleDOI
John C. Slonczewski1
TL;DR: In this paper, a new mechanism was proposed for exciting the magnetic state of a ferromagnet, where a transfer of vectorial spin accompanied an electric current flowing perpendicular to two parallel magnetic films connected by a normal metallic spacer.

5,824 citations

Journal ArticleDOI
TL;DR: In this paper, a universal set of one-and two-quantum-bit gates for quantum computation using the spin states of coupled single-electron quantum dots is proposed, and the desired operations are effected by the gating of the tunneling barrier between neighboring dots.
Abstract: We propose an implementation of a universal set of one- and two-quantum-bit gates for quantum computation using the spin states of coupled single-electron quantum dots. Desired operations are effected by the gating of the tunneling barrier between neighboring dots. Several measures of the gate quality are computed within a recently derived spin master equation incorporating decoherence caused by a prototypical magnetic environment. Dot-array experiments that would provide an initial demonstration of the desired nonequilibrium spin dynamics are proposed.

5,801 citations

Journal ArticleDOI
TL;DR: In this paper, the interaction between spin waves and itinerant electrons is considerably enhanced in the vicinity of an interface between normal and ferromagnetic layers in metallic thin films, leading to a local increase of the Gilbert damping parameter which characterizes spin dynamics.
Abstract: The interaction between spin waves and itinerant electrons is considerably enhanced in the vicinity of an interface between normal and ferromagnetic layers in metallic thin films. This leads to a local increase of the Gilbert damping parameter which characterizes spin dynamics. When a dc current crosses this interface, stimulated emission of spin waves is predicted to take place. Beyond a certain critical current density, the spin damping becomes negative; a spontaneous precession of the magnetization is predicted to arise. This is the magnetic analog of the injection laser. An extra dc voltage appears across the interface, given by an expression similar to that for the Josephson voltage across a superconducting junction. \textcopyright{} 1996 The American Physical Society.

4,433 citations