scispace - formally typeset
Open AccessProceedings ArticleDOI

Split-Brain Autoencoders: Unsupervised Learning by Cross-Channel Prediction

Reads0
Chats0
TLDR
Split-brain autoencoders as mentioned in this paper add a split to the network, resulting in two disjoint sub-networks, each sub-network is trained to perform a difficult task predicting one subset of the data channels from another.
Abstract
We propose split-brain autoencoders, a straightforward modification of the traditional autoencoder architecture, for unsupervised representation learning. The method adds a split to the network, resulting in two disjoint sub-networks. Each sub-network is trained to perform a difficult task – predicting one subset of the data channels from another. Together, the sub-networks extract features from the entire input signal. By forcing the network to solve cross-channel prediction tasks, we induce a representation within the network which transfers well to other, unseen tasks. This method achieves state-of-the-art performance on several large-scale transfer learning benchmarks.

read more

Citations
More filters
Posted Content

Momentum Contrast for Unsupervised Visual Representation Learning

TL;DR: This article proposed Momentum Contrast (MoCo) for unsupervised visual representation learning, which enables building a large and consistent dictionary on-the-fly that facilitates contrastive learning.
Proceedings ArticleDOI

Momentum Contrast for Unsupervised Visual Representation Learning

TL;DR: This article proposed Momentum Contrast (MoCo) for unsupervised visual representation learning, which enables building a large and consistent dictionary on-the-fly that facilitates contrastive learning.
Posted Content

The Unreasonable Effectiveness of Deep Features as a Perceptual Metric

TL;DR: A new dataset of human perceptual similarity judgments is introduced and it is found that deep features outperform all previous metrics by large margins on this dataset, and suggests that perceptual similarity is an emergent property shared across deep visual representations.
Proceedings ArticleDOI

The Unreasonable Effectiveness of Deep Features as a Perceptual Metric

TL;DR: In this paper, the authors introduce a new dataset of human perceptual similarity judgments, and systematically evaluate deep features across different architectures and tasks and compare them with classic metrics, finding that deep features outperform all previous metrics by large margins on their dataset.
Proceedings ArticleDOI

Unsupervised Feature Learning via Non-parametric Instance Discrimination

TL;DR: This work forms this intuition as a non-parametric classification problem at the instance-level, and uses noise-contrastive estimation to tackle the computational challenges imposed by the large number of instance classes.
References
More filters
Proceedings ArticleDOI

Deep Residual Learning for Image Recognition

TL;DR: In this article, the authors proposed a residual learning framework to ease the training of networks that are substantially deeper than those used previously, which won the 1st place on the ILSVRC 2015 classification task.
Proceedings Article

ImageNet Classification with Deep Convolutional Neural Networks

TL;DR: The state-of-the-art performance of CNNs was achieved by Deep Convolutional Neural Networks (DCNNs) as discussed by the authors, which consists of five convolutional layers, some of which are followed by max-pooling layers, and three fully-connected layers with a final 1000-way softmax.
Proceedings Article

Very Deep Convolutional Networks for Large-Scale Image Recognition

TL;DR: This work investigates the effect of the convolutional network depth on its accuracy in the large-scale image recognition setting using an architecture with very small convolution filters, which shows that a significant improvement on the prior-art configurations can be achieved by pushing the depth to 16-19 weight layers.
Proceedings Article

Very Deep Convolutional Networks for Large-Scale Image Recognition

TL;DR: In this paper, the authors investigated the effect of the convolutional network depth on its accuracy in the large-scale image recognition setting and showed that a significant improvement on the prior-art configurations can be achieved by pushing the depth to 16-19 layers.
Journal ArticleDOI

Generative Adversarial Nets

TL;DR: A new framework for estimating generative models via an adversarial process, in which two models are simultaneously train: a generative model G that captures the data distribution and a discriminative model D that estimates the probability that a sample came from the training data rather than G.