scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Spray coating of crack templates for the fabrication of transparent conductors and heaters on flat and curved surfaces.

08 Jul 2014-ACS Applied Materials & Interfaces (American Chemical Society)-Vol. 6, Iss: 16, pp 13688-13696
TL;DR: Spray coating in the context of crack template is a powerful method for producing transparent heaters, which is shown for the first time in this work.
Abstract: Transparent conducting electrodes (TCEs) have been made on flat, flexible, and curved surfaces, following a crack template method in which a desired surface was uniformly spray-coated with a crackle precursor (CP) and metal (Ag) was deposited by vacuum evaporation. An acrylic resin (CP1) and a SiO2 nanoparticle-based dispersion (CP2) derived from commercial products served as CPs to produce U-shaped cracks in highly interconnected networks. The crack width and the density could be controlled by varying the spray conditions, resulting in varying template thicknesses. By depositing Ag in the crack regions of the templates, we have successfully produced Ag wire network TCEs on flat-flexible PET sheets, cylindrical glass tube, flask and lens surface with transmittance up to 86%, sheet resistance below 11 Ω/□ for electrothermal application. When used as a transparent heater by joule heating of the Ag network, AgCP1 and AgCP2 on PET showed high thermal resistance values of 515 and 409 °C cm2/W, respectively, wi...
Citations
More filters
Journal ArticleDOI
TL;DR: This review provides topical coverage of next generation transparent conducting electrodes (TCE) based on a wide range of materials such as oxide nanoparticles, CNTs, graphene, metal nanowires, metal meshes and their hybrids.
Abstract: Heater plates or sheets that are visibly transparent have many interesting applications in optoelectronic devices such as displays, as well as in defrosting, defogging, gas sensing and point-of-care disposable devices. In recent years, there have been many advances in this area with the advent of next generation transparent conducting electrodes (TCE) based on a wide range of materials such as oxide nanoparticles, CNTs, graphene, metal nanowires, metal meshes and their hybrids. The challenge has been to obtain uniform and stable temperature distribution over large areas, fast heating and cooling rates at low enough input power yet not sacrificing the visible transmittance. This review provides topical coverage of this important research field paying due attention to all the issues mentioned above.

183 citations

Journal ArticleDOI
01 Jun 2016-Small
TL;DR: A new structure of flexible transparent electrodes is reported, featuring a metal mesh fully embedded and mechanically anchored in a flexible substrate, and a cost-effective solution-based fabrication strategy for this new transparent electrode that enables fabrication of a high-aspect-ratio metal mesh, substantially improving conductivity without considerably sacrificing transparency.
Abstract: A new structure of flexible transparent electrodes is reported, featuring a metal mesh fully embedded and mechanically anchored in a flexible substrate, and a cost-effective solution-based fabrication strategy for this new transparent electrode. The embedded nature of the metal-mesh electrodes provides a series of advantages, including surface smoothness that is crucial for device fabrication, mechanical stability under high bending stress, strong adhesion to the substrate with excellent flexibility, and favorable resistance against moisture, oxygen, and chemicals. The novel fabrication process replaces vacuum-based metal deposition with an electrodeposition process and is potentially suitable for high-throughput, large-volume, and low-cost production. In particular, this strategy enables fabrication of a high-aspect-ratio (thickness to linewidth) metal mesh, substantially improving conductivity without considerably sacrificing transparency. Various prototype flexible transparent electrodes are demonstrated with transmittance higher than 90% and sheet resistance below 1 ohm sq(-1) , as well as extremely high figures of merit up to 1.5 × 10(4) , which are among the highest reported values in recent studies. Finally using our embedded metal-mesh electrode, a flexible transparent thin-film heater is demonstrated with a low power density requirement, rapid response time, and a low operating voltage.

167 citations

Journal ArticleDOI
TL;DR: This work presents a novel way to manipulate VO2 photonic structures to modulate light transmission as a function of wavelength at different temperatures.
Abstract: Two-dimensional (2D) photonic structures, widely used for generating photonic band gaps (PBG) in a variety of materials, are for the first time integrated with the temperature-dependent phase change of vanadium dioxide (VO2). VO2 possesses thermochromic properties, whose potential remains unrealized due to an undesirable yellow-brown color. Here, a SiO2/VO2 core/shell 2D photonic crystal is demonstrated to exhibit static visible light tunability and dynamic near-infrared (NIR) modulation. Three-dimensional (3D) finite difference time domain (FDTD) simulations predict that the transmittance can be tuned across the visible spectrum, while maintaining good solar regulation efficiency (ΔTsol = 11.0%) and high solar transmittance (Tlum = 49.6%). Experiments show that the color changes of VO2 films are accompanied by NIR modulation. This work presents a novel way to manipulate VO2 photonic structures to modulate light transmission as a function of wavelength at different temperatures.

145 citations

Journal ArticleDOI
TL;DR: Yoon et al. as mentioned in this paper used electrospinning to produce a woven web of nanofibres and then applied a platinum-catalyzed process to coat the polymer threads with copper layers.
Abstract: A highly transparent, flexible, stretchable and patternable copper fiber heater was successfully fabricated for potential use in smart windows and other applications. The thickness of the electrospun polymer nanofibers was controlled during subsequent copper plating by adjusting the electroplating time, with minimal sacrifice in transparency. Self-fused junctions, formed via electroplating, significantly reduced the contact resistance between the intersecting copper-plated fibers. The heater temperature remained constant up to 300% sheet stretching. De-icing tests confirmed the potential applicability of such heaters in smart windows or vehicle defrosters. The copper-plated fibers may be transferred onto any surface with a complex 3D structure, as demonstrated by fabricating a heat-radiating Venus statue covered with the copper-plated fibers. The highest temperature of 328 °C was achieved by using a transparent fibrous film having 90% transparency and 0.058 Ω sq−1 sheet resistance. Stretchable polymer fibres can be turned into transparent heating films capable of reaching 300 °C using electroplated copper nanofibers. Icy conditions make it tricky to operate devices for which transparency is critical, such as solar cells and vehicle windscreens. A team led by Prof. Sam Yoon from Korea University and Prof. Alexander Yarin from University of Illinois has developed a route towards ‘smart windows’ with built-in, low-cost copper heaters. Their procedure uses electrospinning to produce a woven web of nanofibres. A platinum-catalyzed process then coats the polymer threads with copper layers. These layers are thin enough to be optically transparent but sufficiently conductive to act as heating elements, thanks to self-fused junctions that connect the network. The team demonstrated that this flexible heater can be patterned into complex three-dimensional shapes by constructing a heat-radiating ‘Venus de Milo’ statue. The complex three-dimensional surface, such as a ‘Venus de Milo’ statue is radiating heat by Joule-heating due to the highly flexible and stretchable copper fibers. The highest temperature can reach up to 328 °C due to self-fused junctions at the copper fiber network.

112 citations

References
More filters
Journal ArticleDOI
TL;DR: Owing to its unusual electronic spectrum, graphene has led to the emergence of a new paradigm of 'relativistic' condensed-matter physics, where quantum relativistic phenomena can now be mimicked and tested in table-top experiments.
Abstract: Graphene is a rapidly rising star on the horizon of materials science and condensed-matter physics. This strictly two-dimensional material exhibits exceptionally high crystal and electronic quality, and, despite its short history, has already revealed a cornucopia of new physics and potential applications, which are briefly discussed here. Whereas one can be certain of the realness of applications only when commercial products appear, graphene no longer requires any further proof of its importance in terms of fundamental physics. Owing to its unusual electronic spectrum, graphene has led to the emergence of a new paradigm of 'relativistic' condensed-matter physics, where quantum relativistic phenomena, some of which are unobservable in high-energy physics, can now be mimicked and tested in table-top experiments. More generally, graphene represents a conceptually new class of materials that are only one atom thick, and, on this basis, offers new inroads into low-dimensional physics that has never ceased to surprise and continues to provide a fertile ground for applications.

35,293 citations

Journal ArticleDOI
TL;DR: The roll-to-roll production and wet-chemical doping of predominantly monolayer 30-inch graphene films grown by chemical vapour deposition onto flexible copper substrates are reported, showing high quality and sheet resistances superior to commercial transparent electrodes such as indium tin oxides.
Abstract: The outstanding electrical, mechanical and chemical properties of graphene make it attractive for applications in flexible electronics. However, efforts to make transparent conducting films from graphene have been hampered by the lack of efficient methods for the synthesis, transfer and doping of graphene at the scale and quality required for applications. Here, we report the roll-to-roll production and wet-chemical doping of predominantly monolayer 30-inch graphene films grown by chemical vapour deposition onto flexible copper substrates. The films have sheet resistances as low as approximately 125 ohms square(-1) with 97.4% optical transmittance, and exhibit the half-integer quantum Hall effect, indicating their high quality. We further use layer-by-layer stacking to fabricate a doped four-layer film and measure its sheet resistance at values as low as approximately 30 ohms square(-1) at approximately 90% transparency, which is superior to commercial transparent electrodes such as indium tin oxides. Graphene electrodes were incorporated into a fully functional touch-screen panel device capable of withstanding high strain.

7,709 citations

Journal ArticleDOI
09 Feb 2008-ACS Nano
TL;DR: These experiments demonstrate solution-processed GO films have potential as transparent electrodes and sheet resistance and optical transparency using different reduction treatments.
Abstract: Processable, single-layered graphene oxide (GO) is an intriguing nanomaterial with tremendous potential for electronic applications. We spin-coated GO thin-films on quartz and characterized their sheet resistance and optical transparency using different reduction treatments. A thermal graphitization procedure was most effective, producing films with sheet resistances as low as 102 −103 Ω/square with 80% transmittance for 550 nm light. Our experiments demonstrate solution-processed GO films have potential as transparent electrodes.

3,011 citations

Journal ArticleDOI
Liangbing Hu1, Han Sun Kim, Jung-Yong Lee1, Peter Peumans1, Yi Cui 
28 Apr 2010-ACS Nano
TL;DR: In this paper, a comprehensive study of transparent and conductive silver nanowire (Ag NW) electrodes, including a scalable fabrication process, morphologies, and optical, mechanical adhesion, and flexibility properties, and various routes to improve the performance.
Abstract: We report a comprehensive study of transparent and conductive silver nanowire (Ag NW) electrodes, including a scalable fabrication process, morphologies, and optical, mechanical adhesion, and flexibility properties, and various routes to improve the performance. We utilized a synthesis specifically designed for long and thin wires for improved performance in terms of sheet resistance and optical transmittance. Twenty Ω/sq and ∼80% specular transmittance, and 8 ohms/sq and 80% diffusive transmittance in the visible range are achieved, which fall in the same range as the best indium tin oxide (ITO) samples on plastic substrates for flexible electronics and solar cells. The Ag NW electrodes show optical transparencies superior to ITO for near-infrared wavelengths (2-fold higher transmission). Owing to light scattering effects, the Ag NW network has the largest difference between diffusive transmittance and specular transmittance when compared with ITO and carbon nanotube electrodes, a property which could gr...

1,950 citations

01 Jan 2010
TL;DR: The overall properties of transparent Ag NW electrodes meet the requirements of transparent electrodes for many applications and could be an immediate ITO replacement for flexible electronics and solar cells.
Abstract: We report a comprehensive study of transparent and conductive silver nanowire (Ag NW) electrodes,includingascalablefabricationprocess,morphologies,andoptical,mechanicaladhesion,andflexibility properties, and various routes to improve the performance. We utilized a synthesis specifically designed for long andthinwiresforimprovedperformanceintermsofsheetresistanceandopticaltransmittance.Twenty/sqand 80% specular transmittance, and 8 ohms/sq and 80% diffusive transmittance in the visible range are achieved, whichfallinthesamerangeasthebestindiumtinoxide(ITO)samplesonplasticsubstratesforflexibleelectronics andsolarcells.TheAgNWelectrodesshowopticaltransparenciessuperiortoITOfornear-infraredwavelengths(2- foldhighertransmission).Owingtolightscatteringeffects,theAgNWnetworkhasthelargestdifferencebetween diffusive transmittance and specular transmittance when compared with ITO and carbon nanotube electrodes, a propertywhichcouldgreatlyenhancesolarcellperformance.AmechanicalstudyshowsthatAgNWelectrodeson flexiblesubstratesshowexcellentrobustnesswhensubjectedtobending.Wealsostudytheelectricalconductance ofAgnanowiresandtheirjunctionsandreportafacileelectrochemicalmethodforaAucoatingtoreducethewire- to-wire junction resistance for better overallfilm conductance. Simple mechanical pressing was also found to increasetheNWfilmconductanceduetothereductionofjunctionresistance.Theoverallpropertiesoftransparent Ag NW electrodes meet the requirements of transparent electrodes for many applications and could be an immediate ITO replacement forflexible electronics and solar cells.

1,824 citations