scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Stabilization of Uncertain Discrete-Time Linear System With Limited Communication

TL;DR: It is shown that the robust control law with aperiodic information ensures input-to-state stability of the original system in the presence of mismatched uncertainty, and derived the event-triggering condition for a discrete-time uncertain system.
Abstract: This technical note proposes a procedure to control an uncertain discrete-time networked system using an aperiodic stabilizing input information. The system is primarily affected by the time-varying, norm bounded, mismatched parametric uncertainty. Aperiodic exchange of information is done due to bandwidth constraint of the communication network. An event-triggered based robust control strategy is adopted to reduce the effects of system uncertainty in such bandwidth constrained networks. In event-triggered control, the control input is computed and actuated at the system end only when a pre-specified event condition is violated. The robust control input is derived to stabilize the uncertain system by solving an optimal control problem based on a virtual nominal dynamics and a modified cost-functional. It is shown that the robust control law with aperiodic information ensures input-to-state stability (ISS) of the original system in the presence of mismatched uncertainty. Deriving the event-triggering condition for a discrete-time uncertain system and ensuring the stability of such system analytically are the key contributions of this technical note. A numerical example is given to prove the efficacy of the proposed event-based control algorithm over the conventional periodic one.
Citations
More filters
01 Jan 2002
TL;DR: In this article, it is shown that Lebesgue sampling gives better performance for some simple systems than traditional Riemann sampling, which is an analog of integration theory and is called event-based sampling.
Abstract: The normal approach to digital control is to sample periodically in time. Using an analog of integration theory we can call this Riemann sampling. Lebesgue sampling or event based sampling is an alternative to Riemann sampling. It means that signals are sampled only when measurements pass certain limits. In this paper it is shown that Lebesgue sampling gives better performance for some simple systems.

77 citations

Journal ArticleDOI
TL;DR: This article considers global exponential synchronization almost surely (GES a.s.) for a class of switched discrete-time neural networks (DTNNs) and finds that the TP matrix plays an important role in achieving the GES a.S., the upper bound of the dwell time (DT) of unsynchronized subsystems can be very large, and the lowerbound of the DT of synchronized subsystems could be very small.
Abstract: This article considers global exponential synchronization almost surely (GES a.s.) for a class of switched discrete-time neural networks (DTNNs). The considered system switches from one mode to another according to transition probability (TP) and evolves with mode-dependent average dwell time (MDADT), i.e., TP-based MDADT switching, which is more practical than classical average dwell time (ADT) switching. The logarithmic quantization technique is utilized to design mode-dependent quantized output controllers (QOCs). Noticing that external perturbations are unavoidable, actuator fault (AF) is also considered. New Lyapunov–Krasovskii functionals and analytical techniques are developed to obtain sufficient conditions to guarantee the GES a.s. It is discovered that the TP matrix plays an important role in achieving the GES a.s., the upper bound of the dwell time (DT) of unsynchronized subsystems can be very large, and the lower bound of the DT of synchronized subsystems can be very small. An algorithm is given to design the control gains, and an optimal algorithm is provided for reducing conservatism of the given results. Numerical examples demonstrate the effectiveness and the merits of the theoretical analysis.

57 citations

Journal ArticleDOI
TL;DR: A model-free solution to the robust stabilization problem of discrete-time linear dynamical systems with bounded and mismatched uncertainty is presented and it is shown that the optimal controller obtained by solving the ARE can robustly stabilize the uncertain system.
Abstract: This paper presents a model-free solution to the robust stabilization problem of discrete-time linear dynamical systems with bounded and mismatched uncertainty. An optimal controller design method is derived to solve the robust control problem, which results in solving an algebraic Riccati equation (ARE). It is shown that the optimal controller obtained by solving the ARE can robustly stabilize the uncertain system. To develop a model-free solution to the translated ARE, off-policy reinforcement learning (RL) is employed to solve the problem in hand without the requirement of system dynamics. In addition, the comparisons between on- and off-policy RL methods are presented regarding the robustness to probing noise and the dependence on system dynamics. Finally, a simulation example is carried out to validate the efficacy of the presented off-policy RL approach.

55 citations


Cites methods from "Stabilization of Uncertain Discrete..."

  • ...Remark 2: In [38], an alternative form of ARE and the optimal feedback gain K ∗ and L∗ are described as P = AT(P−1 + B R1 BT + DR2 DT)−1 A + Q̄ (18) K ∗ = −R−1 1 BT ( P−1 + BT R−1 1 BT + DT R−1 2 DT )−1 A (19) L∗ = −R−1 2 DT ( P−1 + BT R−1 1 BT + DT R−1 2 DT )−1 A....

    [...]

  • ...Consider the discrete-time model for the rotating inverted pendulum used in [38]...

    [...]

Journal ArticleDOI
TL;DR: In this paper , a model-free λ -policy iteration (λ -PI) for the discrete-time linear quadratic regulation (LQR) problem is presented.
Abstract: This article presents a model-free λ -policy iteration ( λ -PI) for the discrete-time linear quadratic regulation (LQR) problem. To solve the algebraic Riccati equation arising from solving the LQR in an iterative manner, we define two novel matrix operators, named the weighted Bellman operator and the composite Bellman operator. Then, the λ -PI algorithm is first designed as a recursion with the weighted Bellman operator, and its equivalent formulation as a fixed-point iteration with the composite Bellman operator is shown. The contraction and monotonic properties of the composite Bellman operator guarantee the convergence of the λ -PI algorithm. In contrast to the PI algorithm, the λ -PI does not require an admissible initial policy, and the convergence rate outperforms the value iteration (VI) algorithm. Model-free extension of the λ -PI algorithm is developed using the off-policy reinforcement learning technique. It is also shown that the off-policy variants of the λ -PI algorithm are robust against the probing noise. Finally, simulation examples are conducted to validate the efficacy of the λ -PI algorithm.

36 citations

Journal ArticleDOI
TL;DR: An improved event-triggered adaptive backstepping control scheme is presented in this study for a class of uncertain NCSs with non-Lipschitz non-linearities under limited resources to satisfy bandwidth limitation and ensure system stability with acceptable transient performance.
Abstract: Over the past few years, networked control systems (NCSs) have shown rapid progress and have indeed been very popular in terms of research as well as industrial applications. The issue of limited resources has been a fundamental problem in the translation of modern control techniques to NCS design. In order to address the aforesaid design challenge, an improved event-triggered adaptive backstepping control scheme is presented in this study for a class of uncertain NCSs with non-Lipschitz non-linearities under limited resources. Rather than a preselected constant threshold assumption, a well-designed and systematic triggering rule is derived based on the Lyapunov approach in order to satisfy bandwidth limitation and ensure system stability with acceptable transient performance. Relative to existing strategies in the literature, the proposed method leads to a substantially reduced number of transmissions with longer inter-event time. Thereby, the proposed algorithm exhibits more efficiency in resource utilisation. Simulation results on a networked control based robotic manipulator system illustrate the efficacy of the proposed adaptive scheme compared to benchmark control algorithms intended for a similar application.

28 citations

References
More filters
Journal ArticleDOI
TL;DR: This book discusses Classical and Modern Control Optimization Optimal Control Historical Tour, Variational Calculus for Discrete-Time Systems, and more.
Abstract: INTRODUCTION Classical and Modern Control Optimization Optimal Control Historical Tour About This Book Chapter Overview Problems CALCULUS OF VARIATIONS AND OPTIMAL CONTROL Basic Concepts Optimum of a Function and a Functional The Basic Variational Problem The Second Variation Extrema of Functions with Conditions Extrema of Functionals with Conditions Variational Approach to Optimal Systems Summary of Variational Approach Problems LINEAR QUADRATIC OPTIMAL CONTROL SYSTEMS I Problem Formulation Finite-Time Linear Quadratic Regulator Analytical Solution to the Matrix Differential Riccati Equation Infinite-Time LQR System I Infinite-Time LQR System II Problems LINEAR QUADRATIC OPTIMAL CONTROL SYSTEMS II Linear Quadratic Tracking System: Finite-Time Case LQT System: Infinite-Time Case Fixed-End-Point Regulator System Frequency-Domain Interpretation Problems DISCRETE-TIME OPTIMAL CONTROL SYSTEMS Variational Calculus for Discrete-Time Systems Discrete-Time Optimal Control Systems Discrete-Time Linear State Regulator Systems Steady-State Regulator System Discrete-Time Linear Quadratic Tracking System Frequency-Domain Interpretation Problems PONTRYAGIN MINIMUM PRINCIPLE Constrained Systems Pontryagin Minimum Principle Dynamic Programming The Hamilton-Jacobi-Bellman Equation LQR System using H-J-B Equation CONSTRAINED OPTIMAL CONTROL SYSTEMS Constrained Optimal Control TOC of a Double Integral System Fuel-Optimal Control Systems Minimum Fuel System: LTI System Energy-Optimal Control Systems Optimal Control Systems with State Constraints Problems APPENDICES Vectors and Matrices State Space Analysis MATLAB Files REFERENCES INDEX

1,259 citations


"Stabilization of Uncertain Discrete..." refers methods in this paper

  • ...discrete-time LQR methods, the Riccati equation (14) and controller gains (17), (18) are achieved [21]....

    [...]

Journal ArticleDOI
TL;DR: The input-to-state stability property and small-gain theorems are introduced as the cornerstone of new stability criteria for discrete-time nonlinear systems.

1,179 citations

Book ChapterDOI
TL;DR: This expository presentation addresses the precise formulation of questions of robustness with respect to disturbances, formulated in the paradigm of input to state stability, with an intuitive and informal presentation of the main concepts.
Abstract: The analysis and design of nonlinear feedback systems has recently undergone an exceptionally rich period of progress and maturation, fueled, to a great extent, by (1) the discovery of certain basic conceptual notions, and (2) the identification of classes of systems for which systematic decomposition approaches can result in effective and easily computable control laws. These two aspects are complementary, since the latter approaches are, typically, based upon the inductive verification of the validity of the former system properties under compositions (in the terminology used in [62], the “activation” of theoretical concepts leads to “constructive” control). This expository presentation addresses the first of these aspects, and in particular the precise formulation of questions of robustness with respect to disturbances, formulated in the paradigm of input to state stability. We provide an intuitive and informal presentation of the main concepts. More precise statements, especially about older results, are given in the cited papers, as well as in several previous surveys such as [103] and [105] (of which the present paper represents an update), but we provide a little more detail about relatively recent work. Regarding applications and extensions of the basic framework, we give some pointers to the literature, but we do not focus on feedback design and specific engineering problems; for the latter we refer the reader to textbooks such as [43], [60], [58], [96], [66], [27], [44].

1,142 citations


"Stabilization of Uncertain Discrete..." refers methods in this paper

  • ...Throughout this technical note, the following definitions are used to derive the theoretical results [18]–[20]....

    [...]

Journal ArticleDOI
10 Dec 2013
TL;DR: The PETC strategies developed in this paper apply to both static state-feedback and dynamical output-based controllers, as well as to both centralized and decentralized (periodic) event-triggering conditions.
Abstract: Event-triggered control (ETC) is a control strategy that is especially suited for applications where communication resources are scarce. By updating and communicating sensor and actuator data only when needed for stability or performance purposes, ETC is capable of reducing the amount of communications, while still retaining a satisfactory closed-loop performance. In this paper, an ETC strategy is proposed by striking a balance between conventional periodic sampled-data control and ETC, leading to so-called periodic event-triggered control (PETC). In PETC, the event-triggering condition is verified periodically and at every sampling time it is decided whether or not to compute and to transmit new measurements and new control signals. The periodic character of the triggering conditions leads to various implementation benefits, including a minimum inter-event time of (at least) the sampling interval of the event-triggering condition. The PETC strategies developed in this paper apply to both static state-feedback and dynamical output-based controllers, as well as to both centralized and decentralized (periodic) event-triggering conditions. To analyze the stability and the L2-gain properties of the resulting PETC systems, three different approaches will be presented based on 1) impulsive systems, 2) piecewise linear systems, and 3) perturbed linear systems. Moreover, the advantages and disadvantages of each of the three approaches will be discussed and the developed theory will be illustrated using a numerical example.

1,011 citations

Journal ArticleDOI
TL;DR: A DOB-based SMC method is developed in this paper to counteract the mismatched disturbance and exhibits much better control performance than the baseline SMC and the integral SMC (I-SMC) methods, such as reduced chattering and nominal performance recovery.
Abstract: This paper develops a sliding-mode control (SMC) approach for systems with mismatched uncertainties via a nonlinear disturbance observer (DOB). By designing a novel sliding surface based on the disturbance estimation, a DOB-based SMC method is developed in this paper to counteract the mismatched disturbance. The newly proposed method exhibits the following two attractive features. First, the switching gain is only required to be designed greater than the bound of the disturbance estimation error rather than that of the disturbance; thus, the chattering problem is substantially alleviated. Second, the proposed method retains its nominal performance, which means the proposed method acts the same as the baseline sliding-mode controller in the absence of uncertainties. Simulation results of both the numerical and application examples show that the proposed method exhibits much better control performance than the baseline SMC and the integral SMC (I-SMC) methods, such as reduced chattering and nominal performance recovery.

1,010 citations