scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Star-Shaped ESIPT-Active Mechanoresponsive Luminescent AIEgen and Its On–Off–On Emissive Response to Cu2+/S2–

TL;DR: The design and construction of versatile star-shaped intramolecular charge transfer (ICT) and ESIPT-active mechanoresponsive and aggregation-induced emissive (AIE) luminogen triaminoguanidine-diethylaminophenol (LH3) conjugate is reported, which exhibits mechanochromic fluorescence behavior upon external grinding.
Abstract: Design and development of multifunctional materials have drawn incredible attraction in recent years. Herein, we report the design and construction of versatile star-shaped intramolecular charge transfer (ICT)-coupled excited-state intramolecular proton transfer (ESIPT)-active mechanoresponsive and aggregation-induced emissive (AIE) luminogen triaminoguanidine-diethylaminophenol (LH3 ) conjugate from simple precursors triaminoguanidine hydrochloride and 4-(N,N-diethylamino)salicylaldehyde. Solvent-dependent dual emission in nonpolar to polar protic solvents implies the presence of ICT-coupled ESIPT features in the excited state. Aggregation-enhanced emissive feature of LH3 was established in the CH3CN/water mixture. Furthermore, this compound exhibits mechanochromic fluorescence behavior upon external grinding. Fluorescence microscopy images of pristine, crystal, and crushed crystals confirm the naked-eye mechanoresponsive characteristics of LH3 . In addition, LH3 selectively sensed a Cu2+ ion through a colorimetric and fluorescence "turn-off" route, and subsequently, the LH3 -Cu2+ ensemble could act as a selective and sensitive sensor for S2- in a "turn-on" fluorescence manner via a metal displacement approach. Reversible "turn-off-turn-on" features of LH3 with Cu2+/S2- ions were efficiently demonstrated to construct the IMPLICATION logic gate function. The Cu2+/S2--responsive sensing behavior of LH3 was established in the paper strip experiment also, which can easily be characterized by the naked eye under daylight as well as a UV lamp (λ = 365 nm).
Citations
More filters
Journal ArticleDOI
TL;DR: A comprehensive review of the recent development and applications of excited-state intramolecular proton transfer-based (ESIPT-based) aggregation-induced emission luminogens (AIEgens) can be found in this paper .
Abstract: In this review, we present a systematic and comprehensive summary of the recent development and applications of excited‐state intramolecular proton transfer‐based (ESIPT‐based) aggregation‐induced emission luminogens (AIEgens), a type of promising materials that inherit the advantages of ESIPT and AIE, such as large Stokes shift, excellent photostability, and low self‐quenching. We first summarize the backbones that have been used to construct the ESIPT‐based AIEgens and classify the constructed ones based on the relation between ESIPT and AIE unit. According to the sensing mechanisms and design strategies, we have reviewed the applications of ESIPT‐based AIEgens in bioimaging, drug delivery systems, organic light‐emitting diodes, photo‐patterning, liquid crystal, and the detection of metal cations, anions, small molecules, biothiols, biological enzymes, latent fingerprinting, and so on. We have also reviewed the recent advances in the development of new theoretical methods for investigating molecular photochemistry in crystals and their applications in ESIPT‐based AIEgens. We discussed the remaining challenges in this field and the issues that need to be addressed. We anticipate that this review can provide a comprehensive picture of the current condition of research in this field, and promote researchers to make more efforts to develop novel ESIPT‐based AIEgens with new applications.

55 citations

Journal ArticleDOI
TL;DR: In this paper, a donor-acceptor-structured triphenylamine-functionalized unsymmetrical azine molecules (L1-L4) were constructed from 4-(hydrazonomethyl)-N,N-diphenylaniline with different salicylaldehyde derivatives.
Abstract: The development of multi-color aggregation-induced emission (AIE)-featured azine molecules with excited-state intramolecular proton transfer (ESIPT) characteristics has drawn significant interest in recent years. In this study, we report the construction of donor-acceptor-structured triphenylamine-functionalized unsymmetrical azine molecules (L1–L4) prepared from 4-(hydrazonomethyl)-N,N-diphenylaniline with different salicylaldehyde derivatives. By changing the electron donating ability at the ESIPT moiety, we could tune the optical properties of the newly synthesized molecules. All the compounds exhibited the AIE behavior in a THF/water mixture and the excited-state intramolecular proton transfer phenomenon. Further, the tuning of a peripheral substituent in the salicylaldehyde moiety resulted in different emission colors in the aggregated state. The crystal structure of all the compounds (L1–L4) revealed that the multiple weak interactions present in the solid-state structure lead to various supramolecular networks. In addition, these molecules showed a prominent positive solvatochromic effect, which was confirmed by their solvent polarity-dependent emission behavior. The appearance of dual emission bands in the solid as well as in the solution state, lifetime values and HOMO, LUMO energy gap of the keto and enol forms strongly support the occurrence of ESIPT in all the compounds (L1–L4). Furthermore, the presence of two different electron donating groups in L3 (triphenylamine and diethylamino) induced pH-dependent emissive features in solution.

45 citations

Journal ArticleDOI
24 May 2021
TL;DR: In this article, a hydroxy naphthaldehyde-based piezochromic luminogen, namely, 1-{[(2-hydroxyphenyl)imino]methylnaphthalen-2-ol (NAP-1), has been synthesized and its photophysical and molecular sensing properties have been investigated by means of various spectroscopic tools.
Abstract: Selective and sensitive moisture sensors have attracted immense attention due to their ability to monitor the humidity content in industrial solvents, food products, etc., for regulating industrial safety management. Herein, a hydroxy naphthaldehyde-based piezochromic luminogen, namely, 1-{[(2-hydroxyphenyl)imino]methyl}naphthalen-2-ol (NAP-1), has been synthesized and its photophysical and molecular sensing properties have been investigated by means of various spectroscopic tools. Owing to the synergistic effect of both aggregation-induced emission (AIE) and excited-state intramolecular proton transfer (ESIPT) along with the restriction of C=N isomerization, the probe shows bright yellowish-green-colored keto emission with high quantum yield after the interaction with a trace amount of water. This makes NAP-1 a potential sensor for monitoring water content in the industrial solvents with very low detection limits of 0.033, 0.032, 0.034, and 0.033% (v/v) from tetrahydrofuran (THF), acetone, dimethyl sulfoxide (DMSO), and methanol, respectively. The probe could be used in the food industry to detect trace moisture in the raw food samples. The reversible switching behavior of NAP-1 makes it suitable for designing an INHIBIT logic gate with an additional application in inkless writing. In addition, an Internet of Things-(IoT) based prototype device has been proposed for on-site monitoring of the moisture content by a smartphone via Bluetooth or Wi-Fi. The aggregated probe also has the ability to recognize Cu2+ from a purely aqueous medium via the chelation-enhanced quenching (CHEQ) mechanism, leading to ∼84% fluorescence quenching with a Stern-Volmer quenching constant of 1.46 × 104 M-1 and with an appreciably low detection threshold of 57.2 ppb, far below than recommended by the World Health Organization (WHO) and the United States Environmental Protection Agency (U.S. EPA). The spectroscopic and theoretical calculations (density functional theory (DFT), time-dependent DFT (TD-DFT), and natural bond orbital (NBO) analysis) further empower the understanding of the mechanistic course of the interaction of the host-guest recognition event.

39 citations

Journal ArticleDOI
TL;DR: In this article, the authors presented the recent developments in ESIPT-based solid state fluorescent materials and external stimuli-induced fluorescence switching and showed that the substitutional unit, molecular conformation and supramolecular interactions played a significant role in transforming planar ESIPt fluorophores to stimuli-induced fluorescent switching materials either between two states or off-on states.
Abstract: Stimuli-responsive organic solid state fluorescent materials are considered as potential candidates for optoelectronic application as well as in the biomedical field. Molecular design and supramolecular interaction controlled organization in the solid state played an important role in producing switchable and tunable fluorescent materials. Excited state intramolecular proton transfer (ESIPT) mechanism-based solid state fluorescent materials showed unique photophysical properties such as a large Stokes shift and local environment (pH, polarity, ions and viscosity) responsive fluorescence modulation. The unique photophysical properties of ESIPT molecules made them interesting for various fields including laser dyes, molecular probes, optoelectronics, white emissive materials and optical information storage materials. Systematic fluorophore structural engineering has been performed over the years to gain insight on the ESIPT mechanism in order to improve the quantum efficiency and introduce desirable material attributes for functional applications. The substitutional unit, molecular conformation and supramolecular interactions played a significant role in transforming planar ESIPT fluorophores to stimuli-induced fluorescence switching materials either between two states or off–on states. In this review article, we have presented the recent developments in ESIPT-based solid state fluorescent materials and external stimuli-induced fluorescence switching.

34 citations

Journal ArticleDOI
TL;DR: Emissive off-on-off sensing characteristics of the probe has been successfully exploited to construct the INHIBIT logic gate, coding/decoding of messages and in vivo imaging of Zn2+/PPi in zebrafish larvae.

24 citations

References
More filters
Journal ArticleDOI
TL;DR: This work automates routine small-molecule structure determination starting from single-crystal reflection data, the Laue group and a reasonable guess as to which elements might be present.
Abstract: The new computer program SHELXT employs a novel dual-space algorithm to solve the phase problem for single-crystal reflection data expanded to the space group P1. Missing data are taken into account and the resolution extended if necessary. All space groups in the specified Laue group are tested to find which are consistent with the P1 phases. After applying the resulting origin shifts and space-group symmetry, the solutions are subject to further dual-space recycling followed by a peak search and summation of the electron density around each peak. Elements are assigned to give the best fit to the integrated peak densities and if necessary additional elements are considered. An isotropic refinement is followed for non-centrosymmetric space groups by the calculation of a Flack parameter and, if appropriate, inversion of the structure. The structure is assembled to maximize its connectivity and centred optimally in the unit cell. SHELXT has already solved many thousand structures with a high success rate, and is optimized for multiprocessor computers. It is, however, unsuitable for severely disordered and twinned structures because it is based on the assumption that the structure consists of atoms.

17,039 citations

Journal ArticleDOI
10 Sep 1998-Nature
TL;DR: In this article, a host material doped with the phosphorescent dye PtOEP (PtOEP II) was used to achieve high energy transfer from both singlet and triplet states.
Abstract: The efficiency of electroluminescent organic light-emitting devices1,2 can be improved by the introduction3 of a fluorescent dye. Energy transfer from the host to the dye occurs via excitons, but only the singlet spin states induce fluorescent emission; these represent a small fraction (about 25%) of the total excited-state population (the remainder are triplet states). Phosphorescent dyes, however, offer a means of achieving improved light-emission efficiencies, as emission may result from both singlet and triplet states. Here we report high-efficiency (≳90%) energy transfer from both singlet and triplet states, in a host material doped with the phosphorescent dye 2,3,7,8,12,13,17,18-octaethyl-21H,23H-porphine platinum(II) (PtOEP). Our doped electroluminescent devices generate saturated red emission with peak external and internal quantum efficiencies of 4% and 23%, respectively. The luminescent efficiencies attainable with phosphorescent dyes may lead to new applications for organic materials. Moreover, our work establishes the utility of PtOEP as a probe of triplet behaviour and energy transfer in organic solid-state systems.

7,023 citations

Journal ArticleDOI
TL;DR: In this paper, it was shown that the position of the absorption bands of iodine solutions in the visible region moved gradually from violet to brown, the shift being only small in the case of benzene in which the color of iodine is a red-violet.
Abstract: Introduction The various colors of iodine in different solvents have attracted the attention of investigators for over half a century. Beckmann’ showed that the differences are not due to any change in the molecular weight of iodine and suggested solvation as the cause of brown color. Lachman2 supported this explanation, pointing out that the solvents which give a violet color are saturated, those which give brown colors are unsaturated. He stated that small additions of alcohol to a solution of iodine in chloroform suffice to shift the color stepwise from violet to brown. Hildebrand and Glascock3 found that when iodine and an alcohol were both added to a “violet” solvent, bromoform or ethylene bromide, the molal lowering of the freezing point was considerably less than additive, indicating combination of iodine with alcohol. Furthermore, they investigated colorimetrically the equilibria of iodine with ethyl alcohol, ethyl acetate and nitrobenzene dissolved together in a “violet” solvent such as carbon tetrachloride, chloroform or carbon disulfide, and found in each case an equilibrium constant corresponding to a 1 : 1 compound. They calculated the heat of combination in one case. There followed a long series of investigations of the general problem, well summarized by Gmelin4 and in a recent review by Kleinberg and Davidson.6 But the original division of iodine solutions into two or more distinct color classes became untenable with the work of Waentig, Groh’ and \\X7alkers which showed that the position of the absorption bands of iodine solutions in the visible region moved gradually from violet to brown, the shift being only small in the case of benzene in which the color of iodine is a red-violet. We have long been curious about the chemical basis for iodine solvates. It is not a question of dipole moment, as Walkers concluded, for we have recently shown rather conclusively that the iodine solubility, which would be altered by solvation effects, bears little or no relation to the dipole moment of the solvent mole~ule .~ The alcohols are extraordinary dipoles, and their effect is readily understandable, but the case of benzene seemed

6,904 citations

Journal ArticleDOI
TL;DR: This paper presents a meta-analysis of the chiral stationary phase transition of Na6(CO3)(SO4)2, a major component of the response of the immune system to Na2CO3.
Abstract: Ju Mei,†,‡,∥ Nelson L. C. Leung,†,‡,∥ Ryan T. K. Kwok,†,‡ Jacky W. Y. Lam,†,‡ and Ben Zhong Tang*,†,‡,§ †HKUST-Shenzhen Research Institute, Hi-Tech Park, Nanshan, Shenzhen 518057, China ‡Department of Chemistry, HKUST Jockey Club Institute for Advanced Study, Institute of Molecular Functional Materials, Division of Biomedical Engineering, State Key Laboratory of Molecular Neuroscience, Division of Life Science, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China Guangdong Innovative Research Team, SCUT-HKUST Joint Research Laboratory, State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou 510640, China

5,658 citations