scispace - formally typeset
Search or ask a question
Journal ArticleDOI

Starvation in man.

19 Mar 1970-The New England Journal of Medicine (N Engl J Med)-Vol. 282, Iss: 12, pp 668-675
TL;DR: In this article, it was shown that decreased levels of active T3 may play a role by sparing otherwise obligated calories by decreasing metabolic needs, but this can be nullified by amino acid or protein supplementation.
Abstract: Starvation entails a progressive selection of fat as body fuel. Soon after a meal glucose utilisation by muscle ceases and fatty acids are used instead. Ketoacid levels in blood become elevated over the first week, and the brain preferentially uses these instead of glucose. The net effect is to spare protein even further, as glucose utilisation by brain is diminished. Nevertheless, there is still net negative nitrogen balance, but this can be nullified by amino acid or protein supplementation. Insulin appears to be the principal regulatory hormone. Recent data suggest that decreased levels of active T3 may play a role by sparing otherwise obligated calories by decreasing metabolic needs.
Citations
More filters
Journal ArticleDOI
TL;DR: There is growing evidence that aging involves, in addition, progressive changes in free radical-mediated regulatory processes that result in altered gene expression.
Abstract: At high concentrations, free radicals and radical-derived, nonradical reactive species are hazardous for living organisms and damage all major cellular constituents. At moderate concentrations, how...

9,131 citations

Journal ArticleDOI
08 May 2002-JAMA
TL;DR: The physiological effects of the glycemic index and the relevance of these effects in preventing and treating obesity, diabetes, and cardiovascular disease are examined.
Abstract: The glycemic index was proposed in 1981 as an alternative system for classifying carbohydrate-containing food. Since then, several hundred scientific articles and numerous popular diet books have been published on the topic. However, the clinical significance of the glycemic index remains the subject of debate. The purpose of this review is to examine the physiological effects of the glycemic index and the relevance of these effects in preventing and treating obesity, diabetes, and cardiovascular disease.

1,682 citations


Cites background from "Starvation in man."

  • ...This combination of elevated counterregulatory hormone and free fatty acid levels resembles a state of fasting normally reached only after many hours without food.(38) After a low–glycemic index meal, by contrast, hypoglycemia and its hormonal sequelae do not occur during the postprandial period owing to continued absorption of nutrients from the gastrointestinal tract and rising hepatic glucose output....

    [...]

Journal ArticleDOI
TL;DR: In this paper, the authors present guidelines for reducing the risk of cardiovascular disease by dietary and other lifestyle practices, which place increased emphasis on foods and an overall eating pattern and the need for all Americans to achieve and maintain a healthy body weight.
Abstract: This document presents guidelines for reducing the risk of cardiovascular disease by dietary and other lifestyle practices. Since the previous publication of these guidelines by the American Heart Association,1 the overall approach has been modified to emphasize their relation to specific goals that the AHA considers of greatest importance for lowering the risk of heart disease and stroke. The revised guidelines place increased emphasis on foods and an overall eating pattern and the need for all Americans to achieve and maintain a healthy body weight (Table⇓). View this table: Table 1. Summary of Dietary Guidelines The major guidelines are designed for the general population and collectively replace the “Step 1” designation used for earlier AHA population-wide dietary recommendations. More individualized approaches involving medical nutrition therapy for specific subgroups (for example, those with lipid disorders, diabetes, and preexisting cardiovascular disease) replace the previous “Step 2” diet for higher-risk individuals. The major emphasis for weight management should be on avoidance of excess total energy intake and a regular pattern of physical activity. Fat intake of ≤30% of total energy is recommended to assist in limiting consumption of total energy as well as saturated fat. The guidelines continue to advocate a population-wide limitation of dietary saturated fat to <10% of energy and cholesterol to <300 mg/d. Specific intakes for individuals should be based on cholesterol and lipoprotein levels and the presence of existing heart disease, diabetes, and other risk factors. Because of increased evidence for the cardiovascular benefits of fish (particularly fatty fish), consumption of at least 2 fish servings per week is now recommended. Finally, recent studies support a major benefit on blood pressure of consuming vegetables, fruits, and low-fat dairy products, as well as limiting salt intake (<6 grams per day) and alcohol (no more than 2 drinks per day for men and …

1,515 citations

Journal ArticleDOI
TL;DR: It is imperative that factors directly related to muscle mass, strength, and metabolic function be included in future studies designed to demonstrate optimal lifestyle behaviors throughout the life span, including physical activity and diet.

1,197 citations

Journal ArticleDOI
01 Aug 1995-Diabetes
TL;DR: It is proposed that in uncomplicated obesity, increased lipid availability (FFA levels <1.5 mmol/1) induces both hyperinsulinemia and insulin resistance in parallel fashion, thereby maintaining normoglycemia.
Abstract: We review evidence that increased tissue levels of fatty acyl CoA cause the beta-cell abnormalities of nondiabetic obesity and ultimately result in obesity-dependent diabetes. Nondiabetic obesity in Zucker rats is characterized by hypersecretion of insulin at normal fasting and subfasting glucose concentrations. This is a result of beta-cell hyperplasia and increased low Km glucose usage and oxidation. These abnormalities, the hyperinsulinemia, the hyperplasia of beta-cells, i.e., its in vitro equivalent, enhanced bromodeoxyuridine incorporation, and the increased low Km glucose usage can be induced by culturing normal islets with 2 mmol/l free fatty acids (FFAs). Once obese Zucker diabetic fatty rats become diabetic, glucose-stimulated insulin secretion (GSIS) is absent and beta-cell GLUT2 reduced. Islet triglyceride (TG) content is increased 10-fold, probably reflecting increased FFA delivery (plasma FFA levels > 1.5 mmol/l) beginning about 2 weeks before the onset of diabetes. These beta-cell abnormalities, GSIS loss, GLUT2 loss, and TG accumulation, are prevented by reducing plasma FFAs by caloric restriction and by nicotinamide injection. The loss of GSIS and the accumulation of TGs, but not the GLUT2 loss, can be induced in vitro in normal islets cultured in a 2 mmol/l FFA-containing medium, but prediabetic islets seem far more vulnerable to FFA-induced functional impairment and TG accumulation. It is proposed that in uncomplicated obesity, increased lipid availability (FFA levels < 1.5 mmol/l) induces both hyperinsulinemia and insulin resistance in parallel fashion, thereby maintaining normoglycemia.(ABSTRACT TRUNCATED AT 250 WORDS)

1,058 citations


Cites background from "Starvation in man."

  • ...This glucose-sparing action of FFAs thus prolongs survival during starvation (18)....

    [...]

References
More filters
Journal ArticleDOI
TL;DR: Catheterization of cerebral vessels in three obese patients undergoing 5-6 wk of starvation demonstrated that beta-hydroxybutyrate and acetoacetate replaced glucose as the predominant fuel for brain metabolism.
Abstract: Catheterization of cerebral vessels in three obese patients undergoing 5-6 wk of starvation demonstrated that beta-hydroxybutyrate and acetoacetate replaced glucose as the predominant fuel for brain metabolism. A strikingly low respiratory quotient was also observed, suggesting a carboxylation mechanism as a means of disposing of some of the carbon of the consumed substrates.

1,465 citations

Journal ArticleDOI
TL;DR: Over 50 years ago, Benedict published his extensive monograph on the metabolism of fasting in man, in which he demonstrated that carbohydrate stores provide a small but significant component of the body's fuel for only the first few days.
Abstract: Over 50 years ago, Benedict (2) published his extensive monograph on the metabolism of fasting in man, in which he demonstrated that carbohydrate stores provide a small but significant component of the body's fuel for only the first few days. Thereafter, protein and fat are the sole sources of fuel, the former contributing 15% of the calories and the latter the balance. The primary role of fat as fuel was apparent to Benedict and his contemporaries; it is plentiful and expendable. The significance of the protein requirement, however, was less clear; in fact, it was not fully understood until nearly 20 years later when the obligatory dependence of the central nervous system on glucose was firmly established (3). Since glycogen stores in man were known to approximate only 200 g, it was readily apparent that glucose has to be derived from protein in order to maintain cerebral metabolism during a prolonged fast. More recently, our understanding of the fasted state has been further clarified by the demonstration that free fatty acid is both the major transport form of lipid leaving adipose tissue (4, 5) and a substrate that is

996 citations

Journal ArticleDOI
TL;DR: This study quantifies the concentrations of circulating insulin, growth hormone, glucose, free fatty acids, glycerol, beta-hydroxybutyrate, acetoacetate, and alpha amino nitrogen in 11 obese subjects during prolonged starvation.
Abstract: This study quantifies the concentrations of circulating insulin, growth hormone, glucose, free fatty acids, glycerol, beta-hydroxybutyrate, acetoacetate, and alpha amino nitrogen in 11 obese subjects during prolonged starvation. The sites and estimated rates of gluconeogenesis and ketogenesis after 5-6 wk of fasting were investigated in five of the subjects. Blood glucose and insulin concentrations fell acutely during the 1st 3 days of fasting, and alpha amino nitrogen after 17 days. The concentration of free fatty acids, beta-hydroxybutyrate, and acetoacetate did not reach a plateau until after 17 days. Estimated glucose production at 5-6 wk of starvation is reduced to approximately 86 g/24 hr. Of this amount the liver contributes about one-half and the kidney the remainder. Approximately all of the lactate, pyruvate, glycerol, and amino acid carbons which are removed by liver and kidney are converted into glucose, as evidenced by substrate balances across these organs.

797 citations

Journal ArticleDOI
TL;DR: It is concluded that the marked decrease in plasma alanine is due to augmented and preferential splanchnic utilization of this amino acid in early starvation resulting in substrate depletion and is an important component of the regulatory mechanism whereby hepatic gluconeogenesis is diminished and protein catabolism is minimized in prolonged fasting.
Abstract: Plasma concentration, splanchnic and renal exchange, and urinary excretion of 20 amino acids were studied in obese subjects during prolonged (5-6 wk) starvation. Splanchnic amino acid uptake was also investigated in postabsorptive and briefly (36-48 hr) fasted subjects.A transient increase in plasma valine, leucine, isoleucine, methionine, and alpha-aminobutyrate was noted during the 1st wk of starvation. A delayed, progressive increase in glycine, threonine, and serine occurred after the 1st 5 days. 13 of the amino acids ultimately decreased in starvation, but the magnitude of this diminution was greatest for alanine which decreased most rapidly during the 1st week of fasting. In all subjects alanine was extracted by the splanchnic circulation to a greater extent than all other amino acids combined. Brief fasting resulted in an increased arterio-hepatic venous difference for alanine due to increased fractional extraction. After 5-6 wk of starvation, a marked falloff in splanchnic alanine uptake was attributable to the decreased arterial concentration. Prolonged fasting resulted in increased glycine utilization by the kidney and in net renal uptake of alanine. It is concluded that the marked decrease in plasma alanine is due to augmented and preferential splanchnic utilization of this amino acid in early starvation resulting in substrate depletion. Maintenance of the hypoalaninemia ultimately serves to diminish splanchnic uptake of this key glycogenic amino acid and is thus an important component of the regulatory mechanism whereby hepatic gluconeogenesis is diminished and protein catabolism is minimized in prolonged fasting. The altered renal extraction of glycine and alanine is not due to increased urinary excretion but may be secondary to the increased rate of renal gluconeogenesis observed in prolonged starvation.

666 citations

Journal ArticleDOI
TL;DR: Amino acid balance across skeletal muscle and across subcutaneous adipose tissue plus skin of the forearm has been quantified in postabsorptive man before and after insulin infusion into the brachial artery to suggest declines in amino acid levels after systemic insulinization are due to inhibition of muscle release.
Abstract: Amino acid balance across skeletal muscle and across subcutaneous adipose tissue plus skin of the forearm has been quantified in postabsorptive man before and after insulin infusion into the brachial artery. Skeletal muscle released significant amounts of alpha amino nitrogen after an overnight fast. Most individual amino acids were released. Alanine output was by far the greatest. The pattern of release probably reflects both the composition of muscle protein undergoing degradation and de novo synthesis of alanine by transamination. A significant correlation was observed between the extent of release of each amino acid and its ambient arterial concentration. Elevation of forearm insulin in eight subjects from postabsorptive (12 μU/ml) to high physiologic levels (157 μU/ml) in addition to stimulating muscle glucose uptake blocked muscle alpha amino nitrogen release by 74%. Consistent declines in output were seen for leucine, isoleucine, tyrosine, phenylalanine, threonine, glycine, and α-aminobutyric acid. Alanine output was insignificantly affected. Doubling forearm insulin levels (from 10 to 20 μU/ml) in eight subjects increased muscle glucose uptake in three and blocked alpha amino nitrogen output in two although both effects were seen concurrently in only one subject. Changes in net amino acid balance after insulin could be accounted for by increased transport of amino acids into muscle cells or retardation of their exit. It is likely that ambient arterial amino acid concentrations are established and maintained primarily by the extent of muscle amino acid release. The individual amino acids whose outputs from forearm muscle decline after forearm insulinization correspond well with those whose levels fall systematically after systemic insulinization. This suggests that declines in amino acid levels after systemic insulinization are due to inhibition of muscle release. Doubling basal insulin approaches the threshold both for blockade of muscle amino acid output and stimulation of glucose uptake, effects which appear to occur independently.

429 citations