scispace - formally typeset
Search or ask a question
Journal ArticleDOI

State of the art in gold nanoparticle synthesis

01 Feb 2013-Coordination Chemistry Reviews (Elsevier)-Vol. 257, Iss: 3, pp 638-665
TL;DR: In this article, general principles and recent developments in the synthesis of gold nanoparticles (AuNPs) are reviewed and a review of seed-growth methods have allowed a precise control of AuNP sizes in a broad range and multiple shapes.
About: This article is published in Coordination Chemistry Reviews.The article was published on 2013-02-01. It has received 758 citations till now. The article focuses on the topics: Colloidal gold.
Citations
More filters
Book
01 Jan 1971
TL;DR: In this paper, Ozaki et al. describe the dynamics of adsorption and Oxidation of organic Molecules on Illuminated Titanium Dioxide Particles Immersed in Water.
Abstract: 1: Magnetic Particles: Preparation, Properties and Applications: M. Ozaki. 2: Maghemite (gamma-Fe2O3): A Versatile Magnetic Colloidal Material C.J. Serna, M.P. Morales. 3: Dynamics of Adsorption and Oxidation of Organic Molecules on Illuminated Titanium Dioxide Particles Immersed in Water M.A. Blesa, R.J. Candal, S.A. Bilmes. 4: Colloidal Aggregation in Two-Dimensions A. Moncho-Jorda, F. Martinez-Lopez, M.A. Cabrerizo-Vilchez, R. Hidalgo Alvarez, M. Quesada-PMerez. 5: Kinetics of Particle and Protein Adsorption Z. Adamczyk.

1,870 citations

Journal ArticleDOI
TL;DR: The latest trend and challenges in engineering and applications of nanomaterials-enhanced surface plasmon resonance sensors for detecting "hard-to-identify" biological and chemical analytes are reviewed and discussed.
Abstract: The main challenge for all electrical, mechanical and optical sensors is to detect low molecular weight (less than 400 Da) chemical and biological analytes under extremely dilute conditions. Surface plasmon resonance sensors are the most commonly used optical sensors due to their unique ability for real-time monitoring the molecular binding events. However, their sensitivities are insufficient to detect trace amounts of small molecular weight molecules such as cancer biomarkers, hormones, antibiotics, insecticides, and explosive materials which are respectively important for early-stage disease diagnosis, food quality control, environmental monitoring, and homeland security protection. With the rapid development of nanotechnology in the past few years, nanomaterials-enhanced surface plasmon resonance sensors have been developed and used as effective tools to sense hard-to-detect molecules within the concentration range between pmol and amol. In this review article, we reviewed and discussed the latest trend and challenges in engineering and applications of nanomaterials-enhanced surface plasmon resonance sensors (e.g., metallic nanoparticles, magnetic nanoparticles, carbon-based nanomaterials, latex nanoparticles and liposome nanoparticles) for detecting “hard-to-identify” biological and chemical analytes. Such information will be viable in terms of providing a useful platform for designing future ultrasensitive plasmonic nanosensors.

970 citations

Journal ArticleDOI
01 Jul 2018-Talanta
TL;DR: This article reviewed the popular AuNPs synthesis methods and mentioned their established applications in various demands, especially in biological sensing.

772 citations

Journal ArticleDOI
TL;DR: In this paper, the basic concepts and recent developments and advances of gold nanoparticle (AuNP)-catalyzed 4-nitrophenol (4-NP) reduction to 4-aminophenol by sodium borohydride, including the catalytic mechanism, the variety of stabilizers, and dendritic, natural and heterogeneous AuNP supports are presented.

632 citations

Journal ArticleDOI
TL;DR: An overview of the current state of AuNP‐based radiosensitization in the context of the physical, chemical and biological modes of radiosensItization is presented, with design considerations to guide the development of next generation AuNPs for clinical applications.

589 citations

References
More filters
Journal ArticleDOI
22 Oct 1992-Nature
TL;DR: In this paper, the synthesis of mesoporous inorganic solids from calcination of aluminosilicate gels in the presence of surfactants is described, in which the silicate material forms inorganic walls between ordered surfactant micelles.
Abstract: MICROPOROUS and mesoporous inorganic solids (with pore diameters of ≤20 A and ∼20–500 A respectively)1 have found great utility as catalysts and sorption media because of their large internal surface area. Typical microporous materials are the crystalline framework solids, such as zeolites2, but the largest pore dimensions found so far are ∼10–12 A for some metallophosphates3–5 and ∼14 A for the mineral cacoxenite6. Examples of mesoporous solids include silicas7 and modified layered materials8–11, but these are invariably amorphous or paracrystalline, with pores that are irregularly spaced and broadly distributed in size8,12. Pore size can be controlled by intercalation of layered silicates with a surfactant species9,13, but the final product retains, in part, the layered nature of the precursor material. Here we report the synthesis of mesoporous solids from the calcination of aluminosilicate gels in the presence of surfactants. The material14,15 possesses regular arrays of uniform channels, the dimensions of which can be tailored (in the range 16 A to 100 A or more) through the choice of surfactant, auxiliary chemicals and reaction conditions. We propose that the formation of these materials takes place by means of a liquid-crystal 'templating' mechanism, in which the silicate material forms inorganic walls between ordered surfactant micelles.

15,125 citations

Journal ArticleDOI
TL;DR: A review of gold nanoparticles can be found in this article, where the most stable metal nanoparticles, called gold colloids (AuNPs), have been used for catalysis and biology applications.
Abstract: Although gold is the subject of one of the most ancient themes of investigation in science, its renaissance now leads to an exponentially increasing number of publications, especially in the context of emerging nanoscience and nanotechnology with nanoparticles and self-assembled monolayers (SAMs). We will limit the present review to gold nanoparticles (AuNPs), also called gold colloids. AuNPs are the most stable metal nanoparticles, and they present fascinating aspects such as their assembly of multiple types involving materials science, the behavior of the individual particles, size-related electronic, magnetic and optical properties (quantum size effect), and their applications to catalysis and biology. Their promises are in these fields as well as in the bottom-up approach of nanotechnology, and they will be key materials and building block in the 21st century. Whereas the extraction of gold started in the 5th millennium B.C. near Varna (Bulgaria) and reached 10 tons per year in Egypt around 1200-1300 B.C. when the marvelous statue of Touthankamon was constructed, it is probable that “soluble” gold appeared around the 5th or 4th century B.C. in Egypt and China. In antiquity, materials were used in an ecological sense for both aesthetic and curative purposes. Colloidal gold was used to make ruby glass 293 Chem. Rev. 2004, 104, 293−346

11,752 citations

Journal ArticleDOI
G. Frens1
01 Jan 1973-Nature
TL;DR: In this article, a series of monodisperse suspensions of the same chemical composition but of rather different particle sizes was used to study particle size dependent phenomena, such as Brownian motion, light scattering, sedimentation and electrophoresis of small particles.
Abstract: MANY properties of colloids and suspensions depend on the particle size. Series of monodisperse suspensions of the same chemical composition but of rather different particle sizes may be used to study particle size dependent phenomena, such as Brownian motion, light scattering, sedimentation and electrophoresis of small particles. We have used such series to demonstrate the increased tendency of metal suspensions to coagulate in the presence of electrolytes as the radius of the particles increases1.

7,739 citations

Journal ArticleDOI
TL;DR: The interest in nanoscale materials stems from the fact that new properties are acquired at this length scale and, equally important, that these properties are equally important.
Abstract: The interest in nanoscale materials stems from the fact that new properties are acquired at this length scale and, equally important, that these properties * To whom correspondence should be addressed. Phone, 404-8940292; fax, 404-894-0294; e-mail, mostafa.el-sayed@ chemistry.gatech.edu. † Case Western Reserve UniversitysMillis 2258. ‡ Phone, 216-368-5918; fax, 216-368-3006; e-mail, burda@case.edu. § Georgia Institute of Technology. 1025 Chem. Rev. 2005, 105, 1025−1102

6,852 citations